. 5

WL-TR-91-1039 D pro e ’v oy

AD-A236 684 ‘g L i B
l|||||”||'|l||l|"|’|||ﬂ|lﬂlﬂlmlll“lll .

%

ADA COMPILER EVALUATION CAPABILITY

Version Description Document, Release 2.0

Thomas Leavitt
Kermit Terrell

Boeing Military Airplanes
Post Office Box 7730
Wichita KS

May 1991

Interim Report

Approved for public release; distribution unlimited.

AVIONICS DIRECTORATE
WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

91 6 4 109

© #3035 4to0a For .
N N T
;

N :
: i
1
- ‘d
J - o
- el IR
Ve
. SE—
[:
—}
1.0 ;

91-0
L llllllill ﬂlllllll II Illllllll

|

REPORT DOCUMENTATION PAGE form Approved

OMB No 0704-0188

rorns Nt nformation oy et LAING TEE LM O T Bne T i SWAr] eAxstiry data souloes
:hn 11ta 1 k\’ﬁc‘.‘ [iglel »*YH;.]‘ b '.’*‘»- . et \»‘-nd. 'Mvm‘vﬂ.zg'v:-v:“ g’m‘; Tty -"'\’,y §] .
P . . O T AR R |lwd' RO AREEED . "-!)04-’0‘.\"' r'~~,:,'l "':' ““3! -'-“"‘.‘"lk
1. AGENCY USE ONLY (teogve blenk) |2 REPORT DATE 3 REPORT TYPE AND DATES COVERED
‘ May 1991 Interim
A TITLE AND SURTITLE - {5 FUNDING NUMBERS
Ada Compiler Evaluation Capability ' C-F33615-86-C-1059
Version Description Document, Release 2.0 . PE-63756D
I — e et oo e et aren — — PR-2853
N TA-01
Thomas Leavitt ' WU-03
Kermit Terrell '
B O T T B ek I A T ON
) . . AEPTAT RNk
Boeing Military Airplanes)
Post Office Box 7730
Wichita KS
PN J— - et i N P T Y —

Raymond Szymanski (513) 255-3947
Avionics Directorate (WL/AAAF) WL-TR-91-1039
Wright Laboratory

Wright-Patterson, AFB, Oh 45433-6543

Approved for Public Releasej; Distribution is unlimited

. e s Ca e e e e e B— R FA et R s s e e s 4 e At i L A e = i © TA——— o Y

ENr N . . -

The Ada Compiler Evgluation Capability (ACEC) is a set of over 1500 performance
and usability tests used to assess the quality of Ada compilers. The ACEC also
provides statistical analysis tools to assist in analyzing the results generated
by the ACEC. The ACEC is documented through three major documents; the ACEC

Reader's Guide, the ACEC User's Guide and the ACEC Version Description Document.

This document, the ACEC Version Description Document, records data pertinent to
the status and usage of the ACEC. For each test, this document a) provides a
terce description, b) identifies a source file, and ¢) identifies primary,
secondary and incidental purposes.

e e e e e s e e
H 4 GES
I
Ada, Compiler, Evaluation, ACEC : 286
Metrics, Evaluation & Validation Project [R IOD
e S A 1 T wer e St
Un | f DTIC users

Unclass. , Un

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nationms.

This technical report has been reviewed and is approved for publica-
tion.

. : 25 Ml 199/
AYMOND SZYMAN Date
Project Engineer

FOR THE COMMANDER

Clv&\./"\ ({ / ('\!,L"j’l'-' g pPR 19N

CHARLES H. KRUEGER, JR. Date
Dircetor
Syst~in Avionics Division

n Lt ihymstory

If your address has changed, 1f you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAF , WPAFB, OH 45433-6543 to help us maintain & current
mailing 1list,

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

BOEFING
. FSCM NO. 82918

THIS DOCUMENT IS:

CONTROLLED BY SOFTWARE AND LANGUAGES 75380

AL\?{VGS[QNS TO THIS DOCUMENT SHALL BE APPROVED
B8Y YAE ABOVE ORGANIZATION PRIOR TO RELEASE.

PREPARED UNDER K] CONTRACT NO. F33615-86-C-1059
0O 1r&D
[OTHER
PREPARED ON FILED UNDER
DOCUMENT NO. D500-12472-1 MODEL

TITLE Ada COMPILER EVALUATION CAPABILITY (ACEC)
VERSION DESCRIPTION DOCUMENT
RELEASE 2.0

ORIGINAL RELEASE DATE May 4, 1990

ISSUE NO. TO DATE

ABDITIONAL LIMITATISNS IMPOSED ON THIS DOCUMENT
wiC F ON A PARATE LIMITATIONS SHEET.

PREPARED BY “==Go N = 75380 4t Yy GO
CHECKED BY %’Fﬂﬂw 75380 ~ "\“S K]0
1e Leastnlan
i VAN 75380 “ arlae 1590
SUPERVISED BY, Ashb)E”M”‘ o /59

APPROVED BY i/
E. T. Startzman

75380 4/»%, V744

SIGNATURE ORGN DATE

DO 6070 2160 REV 3/84

LIMITATIONS

This document is controlled by the Boeing Military Airplanes (BMA) Software and Languages
Organization. All revisions to this document shall be approved by the above organization prior
to release.

ABSTRACT

This document identifies and describes Version 2 of the Ada Compiler Evaluation Capability
(ACEC). The Version Description Document (VDD) records data pertinent to the status and
usage of the ACEC Software Product.

ACEC
Version Description Document (VDD)

Contents
1 SCOPE
1.1 IDENTIFICATION . .« o vt e e e
1.2 PURPOSE . . . o o e e e e e e e,
1.3 INTRODUCTION . . . o\ttt e
2 REFERENCED DOCUMENTS
2.1 GOVERNMENT DOCUMENTS e,
2.2 NON-GOVERNMENT DOCUMENTS oo
3 VERSION DESCRIPTION
3.1 INVENTORY OF MATERIALS RELEASED
3.2 INVENTORY OF CSCI CONTENTS o oot
33 ADAPTATION DATA e
3.4 INTERFACE COMPATIBILITY e
35 BIBLIOGRAPHY OF REFERENCE DOCUMENTS
3.6 INSTALLATION INSTRUCTIONS oot
3.7 POSSIBLE PROBLEMS AND KNOWN ERRORS
4 NOTES
4.1 ACRONYMS AND ABBREVIATIONS
5 APPENDICES
5.1 Appendix I, TEST PROBLEM DESCRIPTIONS
5.2 Appendix I, TEST PROBLEM TO SOURCE FILE MAP
5.3 Appendix Ill, TAPE DESCRIPTION
5.4 Appendix IV, QUARANTINED TEST PROBLEMS
5.5 Appendix V, ACEC KEYWORD INDEX -1
5.6 Appendix VI, ACEC KEYWORD INDEX -2
5.7 Appendix VII, SYSTEM DEPENDENT TEST PROBLEMS . . .
5.8 Appendix VIII, OPTIMIZATION TECHNIQUES
5.9 Appendix IX, WITHDRAWN TEST PROBLEMS

1 SCOPE
1.1 IDENTIFICATION

This Version Description Document (VDD) describes Version 2 of the Software Product of the
Ada Compiler Evaluation Capability (ACEC) System.

1.2 PURPOSE

The purpose of the ACEC is to provide a capability for quantitative evaluation of Ada compi-
lation systems. The ACEC system is a set of software test programs and associated support
tools and procedures which will determine the performance characteristics of Ada compilation
systems. This includes the capability to automatically compare the results obtained on differ-
ent Ada compilation systems. Such comparisons will isolate language constructions where one
optimization has particular problems relative to other compilers tested. The ACEC will test for
the presence of particular compiler optimizations.

ACEC software is comprised of the test suite and the support tools. For a list and de-
scription of the tests contained in the test suite, see Section 5.1, "Appendix |, Test Problem
Descriptions.” The support tools consist of:

o INCLUDE — A tool to perform source text inclusion. It will assist in adapting programs
to particular targets.

e FORMAT — A tool to extract the timing and code expansion data which the execution
of the test suite wrote to standard output in a human readable form.

e MED_DATA_.CONSTRUCTOR — A tool to convert the output from various runs of
FORMAT (on different systems) into a form usable by the MEDIAN program and the
SSA program. This format is one of two initialized array aggregates: one which identifies
each test problem (by name) and gives the execution time for the problem; and one
which identifies each test problem (by name) and gives the code expansion size for the
problem.

e MEDIAN — A tool to compare resuits of performance tests of various systems.

e SINGLE SYSTEM ANALYSIS (SSA) — A tool to analyze the results of related sets of
performance tests from a single system.

1.3 INTRODUCTION

This document describes the ACEC Software Product as contained on the release tape. It
describes the compilation units, programs, test problems, and sample data contained on the

distribution tape. This document contains several appendices with release dependent informa-
tion, making the Reader's Guide and User's Guide insensitive to releases. See the following
table for a brief description of each of the appendices included in this document.

rAppendixLName

LContents

Test Problem Descriptions

List of test problem names with a brief
description of each. New or withdrawn
tests are identified.

Test Problem to Source File Map

List of test problems and the source file
they are contained in.

Tape Description

List of files on the delivery tape

v

Quarantined Test Problems

Cross reference of test problems
observed to fail on some systems

ACEC Keyword Index - 1

List of primary purposes (with LRM
references) and their associated

test problems, as well as secondary, and
incidental purposes, and comparison tests.

Vi

Vi

ACEC Keyword Index - 2

~S9s€é;n Dependent Test Problems

List of test problems with their primary
purposes (which may be for comparison with
other tests).

“List of test problems which exercise

system dependent features.

vill |

“Optimization Techniques

List of optimization techniques and the
benchmarks designed to test them

IX

Withdrawn Test Problems

List of test problems which have been
withdrawn

2 REFERENCED DOCUMENTS

The following documents are referenced in this VDD.

2.1 GOVERNMENT DOCUMENTS

MIL-STD-1815A Reference Manual for the Ada Programming Language

2.2 NON-GOVERNMENT DOCUMENTS

D500-12470-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
User's Guide
RELEASE 2.0
Boeing Military Airplanes
P. O. Box 7730
Wichita, Kansas

D500-12471-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
Reader’s Guide
RELEASE 2.0
Boeing Military Airplanes

3 VERSION DESCRIPTION

For the second release of the ACEC Software Product, this section contains information on the
inventory of materials released, the inventory of CSCl contents, the adaptation data (where
applicable), interface compatibility (where applicable), bibliography of reference documents,
installation instructions, and possible problems and known errors.

3.1 INVENTORY OF MATERIALS RELEASED

The release of the Software Product of the ACEC will be comprised of:
o the distribution tape,
e the User’s Guide,
e the Reader’s Guide, and

e this VDD.

3.2 INVENTORY OF CSCI CONTENTS

The ACEC Software Product product consists of two CSCls: the Operational Software (test
suite) and the Support Software (support tools). The distribution tape contains the test
suite and the support tools. For a list of the contents of the test suite, see Section 5.1,
"Appendix |, Test Problem Descriptions.” The five support tools are INCLUDE, FORMAT,
MED DATA CONSTRUCTOR, MEDIAN, and SSA. A brief description of each is found in
Section 1.2, "PURPOSE" of this document. For more detailed information, refer to the User's
Guide, Sections: "USING INCLUDE", "PREPARING THE DATA", "RUNNING MEDIAN",
and "SSA".

Refer to Section 5.3, " Appendix IlIl, TAPE DESCRIPTION” for a listing of the files on the
distribution tape.

3.3 ADAPTATION DATA

The ACEC Software Product has no "unique-to-site” data. Appendix VIl (System Dependent
Test Problems) identifies all system depedencies contained in the items being released.

3.4 INTERFACE COMPATIBILITY

Not applicable. For information on how the test suite and the support tools interface, refer to
the User's Guide, Section "PREPARING THE DATA”.

3.5 BIBLIOGRAPHY OF REFERENCE DOCUMENTS
Refer to Section 2, "REFERENCED DOCUMENTS."

3.6 INSTALLATION INSTRUCTIONS

For information detailing how to install and checkout the delivered ACEC Software Product,
refer to the User's Guide, Section "INSTALLATION".

3.7 POSSIBLE PROBLEMS AND KNOWN ERRORS
Refer to 5.4 Appendix IV, "Quarantined Test Problems.”

4 NOTES

This section contains information only and is not contractually binding.

4.1 ACRONYMS AND ABBREVIATIONS

ACEC

BMA

csd

LRM

SSA

TOR

vDD

Ada Compiler Evaluation Capability
Boeing Military Airplanes
Computer Software Configuration {tem

Language Reference Manual, specifically
Reference Manual for the Ada Prograi..:ning
Language, MIL-STD-1815A

Single System Analysis
Technical Operating Report

Version Description Document

10

5 APPENDICES
5.1 Appendix I, TEST PROBLEM DESCRIPTIONS

This appendix contains an alphabetical list of test problem names with a brief description of
each.

11

Problem Test Name [Problem Test Description

a_star Implementation of an Artificial Intelligence
programming technique.

ackerl Classical test, Ackermann’s function, suppression of
pragmas; intensive test of function calling

acker?2 Classical test, Ackermann’s function, no suppression
intensive test of function calling

activationl Use 'address attribute and procedure calling to

measure the size of activation record when calling a
procedure in a separate package. Compare with
activation2, which calls on an INLINED subprogram
in the same compilation unit.

activation2 Use the 'address attribute to measure the size of the
activation record of inlined subprogram. Compare with
activationl, not specified as inline.

ai_create_delete_kb Al application study. Large example program
using non-numeric processing. Create and Delete KB
ai create object Al application study. Large example program using

non-numeric processing. Create objects, with different
degrees of inheritance of attributes from higher

level conceptual objects.

ai_load kb_from file | Al application study. Large example
program using non-numeric processing. Loads a
Knowledge_Base from a file and then deletes it.

ai modify object Al application study. Large example

program using non-numeric processing. Modify values of
attributes within objects.

Al ép>plicat_i6'n study. 'L'aﬁrge'ex‘arrAhpflé
program using non-numeric processing. Query
the relationships between objects.

ai_query |

12

Problem Test Name | Problem Test Description

aliasl

This is a problem which appears to be subject to loop
invariant motion but is not because the object has
aliases (allocated objected referenced by two
different) access types. It includes an error check.

alias?2

This is a problem which appears to be subject to

common subexpression elimination and invariant motion but is
not because the object has aliases (allocated object

referenced by two different) access types. It includes

an error check.

alias3

aliasd4

This is a problem which appears to be subject to dead
assignment elimination but is not because the object
has aliases (allocated object referenced by two
different) access types. It includes an error check.

"This is a problem which appear?t; be subject to

folding but is not because the object has aliases (allocated
object referenced by two different) access types. It
includes an error check.

aliasb
alias5x

aliasb

This is a problem which is subject to loop invariant
motion.

This is a problem which has had loop invariant motion
performed “by hand.”

This is a problem which is subject to common
subexpression elimination.

alias6x

This is a version of alias6 where common subexpression
elimination has been performed “by hand.”

alias7

This is a problem which is subject to dead assignment
elimination.

alias7x

alias8

This is a version of alias7 where the dead assignment
has been eliminated “by hand.”
This is a problem which is subject to folding.

alias8x

This is a version of alias8 folded “by hand.”

alias9

This is a problem which is subject to loop invariant
motion.

13

Problem Test Name I Problem Test Description

alias10 This is a problem which is subject to common
subexpression elimination.
aliasll This is a problem which is subject to dead assignment
elimination.
“alias12 | This is a problem which is subject to folding.
aliasl3 This is a problem which appears to be subject to loop
invariant motion but is not because the object has
aliases. It includes an error check.
aliasl4 This is a problem which appears to be subject to
common subexpression elimination but is not because the
object has aliases. It includes an error check.
alias15 This is a problem which appears to be subject to
dead assignment elimination but is not because the
object has aliases. It includes an error check.
alias16 This is a problem which appears to be subject to
folding but is not because the object has aliases. It includes
an error check.
arti_asum Avionics application study example; Angle sum
arti_atan2 Avionics application study example, Arctangent
arti_cos Avionics application study example; Cosine
arti fmod Avionics application study example, Float mod

arti ifpm control

Avionics application study example;
get input data, initialize In Flight Performance
Monitor (IFPM); check rotor check problem; calls

| on IFPM.IO; IFPMLUINIT; IFPM_ROTORS;

arti_ifpm_init Avionics application study example;
initialize In Flight Performance Monitor (IFPM) system
arti ifpm 10 Avionics application study example

Inflight Performance Monitor (IFPM),
1/O operation

arti_ifpm_rotors

Avionics application study example
IFPM check rotor performance

14

Problem Test Naine | Problem Test Description

arti_nairini

Avionics application study example; Initialize
navigation

arti_nscni

arti_nutmini

Avionics application study example; Initialize data

for Navigation Prime Data rCalrci:ulatiqn__ Routri_n_er (NSQNDV)

Avionics application study efavmblér;-lhitialize
data for NUTMCON and call it. NUTMCOM is a UTM

conversion routine.

arti sin

Avionics application study example, Sine

asyncl

Test of console output and task scheduling. It has
two tasks: a high priority task which does 100 PUTs
to the console and a low priority task which

set a boolean flag if it ever gets control. After
completion of the high priority tasks, the state of the
flag will let the system know whether the low priority
task ever got control. The test problem monitors if
the low priority task got control: never, sometimes, or
always.

async?2

Perform task rendezvouses while the system has a
task waiting on a GET from a console in another task.

async3

Perform 10 000 procedure calls another task is
waiting in a long DELAY loop. Need to perform a
fairly long test problem to permit possible
overheads from polling to show up.

async4

Perform 10 000 procedure calls while another task is
waiting on a terminal GET. Need to perform a

fairly long test problem to permit possible
overheads from polling to show up.

15

Problem Test Naie LProblem Test Description

asynch Test of asynchronous 1/Q. It has two tasks: a high
priority task which does 1000 READs from direct file
and a low priority task which set a boolean flag if

it ever gets control. After completion of the high
priority task, the state of the flag will let the

system know whether the low priority task ever got
control. The test problem monitors if the low
priority task got control: never, sometimes, or

always.

auto Classical test, from the Computer Family Architecture
(CFA) study; autocorrelation program

avl 0 An AVL tree, named after (Adelson-Velskii and Landis)

is a balanced tree supporting both keyed and
positional records in a random order and delete them
in reverse insertion order. Tree size is 100 records.

avl 1 An AVL tree, This problem inserts records in

Tree size is 100 record;._r

ascending key order and deletes them in descending key order.

avli.2 ' An AVL tree test, it artteAmp‘ts_to. insert a duplicate
for each key (which should fail). Tree size is 100
records.

avl 3 An AVL tree, this problem searches for each record

by key. It will fail if the records are not found.
Tree size is 100 records.

avl_4 An AVL tree, this problem searches for each record
by position. It will fail if the proper record is not
found. Tree size is 100 records.

avl 5 An AVL tree test, this problem searches for keys not
present in tree but close to contained values. It

will fail if the records are found. Tree size is 100
records.

16

Problem Test Name | Problem Test Description

avl 6

An AVL tree, named after (Adelson-Velskii and Landis)
is a balanced tree supporting both keyed and

positional records in a random order and delete them
in reverse insertion order. Tree size is 1 000

records.

avl.7

avl_8

An AVL tree, This problem inserts records in
ascending key order and deletes them in descending key order.
Tree size is 1.000 records.

“An AVL tree test, it attempts to insert a duplicate
for each key (which should fail). Tree size is
1 000 records.

avl 9

avl_10

An AVL tree, this problem searches for each record

by key. It will fail if the records are not found.

Tree size is 1.000 records.

An AVL tree, this problem searches for each record
by position. It will fail if the proper record is not
found. Tree size is 1 000 records.

avli 11

bmt

An AVL tree test, this problem searches for keys not
present in tree but close to contained values. It
will fail if the records are not found. Tree size is
1000 records.

Classical test, from CFA study - boolean matrix
transpose heavy use of 2-D array references

bsortl

Classical test, sort program, variant of quicksort
which exploits partially sorted sequences. This
sequence is not sorted.

bsort2

Classical test, sort program, variant of quicksort
which exploits partially sorted sequences. This
sequence Is sorted.

17

Problem Test NameiProblem Test Description

catl

LRM requires that assignment not modify the left hand
side if the expression on the right hand side will

raise an exception. In general, a compiler can comply
with this requirement by copying intermediate results of
catenation operators to a temporary copy and moving it
into the left hand side after verifying that no
exceptions were raised. In some cases, an optimizing
compiler will be able to verify at compile time that

no exceptions can be raised and can generate faster
code by copying directly into the left hand variable
without using a temporary. This set of problems

will explore options in this areas. CAT1 can be

easily verified not to raise length errors.

cat?

Version of catl which will require runtime length check

cat3

Version of catl which will raise CONSTRAINT_ERROR

ciol

Test performance of console output. Test problem
redisplays the same string to permit ACEC user to
observe if the system has an optimizing screen manager
which omits transmitting characters which do not
change

cio?2

Test performance of console output. Test problem
displays string with different characters in each
position, forcing an explicit transmission of each
character.

cio3

Test performance of console output. Test problem
displays string followed by display of a blank string.
Many terminals have control commands which permit
the efficient deletion (blanking) of an entire line.

18

Problem Test Name [Problem Test Description

ciod

Test performance of console output. Test problem
displays string followed by a display of a string with
every other character changed. Some sequence of
terminal commands might include positioning command
to move cursor over each unchanged character, but the
time to process these commands in this example can
easily be larger than a simple delete and transmission
of entire string. This should not be slower than cio2

ciob

Test performance of console output. Test problem
changes one character in the display string from the
prior line. Some sequence of terminal commands can
move one cursor position instruction, a delete, and
an insert, which can be much faster than a general
redisplay where every character must be transmitted.

ciob

Test performance of console output. Test problem
inserts 6 characters in the middle of a display and

deletes 6 at the end of the display. Some terminals
can perform this update with a few commands.

cio7

cio8

Test performance of console output. Test problem
deletes 6 characters in the middle of a display

string. Some terminals can perform this update with
one or two commands (position and delete).

Test performance of console output. Test problem
deletes 50 characters from tail of a display string.

Some terminals can perform this update with one or two
commands (position and delete).

cio9

Test performance of console output. Test problem adds
50 characters to the tail of a 20 character display
string. Some terminals can perform this update with
without transmitting each leading character.

19

Problem Test Namel Problem Test Description

ciolQ

Test performance of console output. Test problem
replaces string with 70 non blank characters

with one non-blank at position 60. Some terminals can
perform this update quicker by blanking line,
positioning cursor, and inserting one character than

by transmitting all the (blank) characters.

cioll

Test performance of console output. Test problem
replaces string with 70 non blank characters
with first 20 characters blank.

ciol2

Test performance of console output. Test problem
replaces string with 70 non blank characters
with first 20 characters different.

ciol3

Test performance of console output. Test problem
replaces string with 2 character string with another
2 character string.

ciold

Test performance of console output. Test problem
replaces string with 60 blanks and an X to all blank
string.

cigsort

Classical test, quicksort. integer array, no suppression

claim01

Test function returning a discriminated record which
contains variable sized components. This might
expose runtime systems which allocate and not
reclaim the space.

claim02

recursive function returning an unconstrained
STRING type. This might expose runtime systems
which allocate and not reclaim the space.

claim03

Test function returning a discriminated record which
contains one variable sized component. This might
expose runtime systems which allocate and not
reclaim the space.

20

Problem Test Naine LP\'oblem Test Description

claim04 Test function returning a discriminated record which
contains multiple discriminated records. This might
expose runtime systems which allocate and not
reclaim the space.

claim05 Test function returns a "large” (a 1000 character
array) fixed size type.

This might expose runtime systems which allocate
and not reclaim the space.

claim06 ' ~ | Test function returns a “small” (a 20 character
array) fixed size type.

This might expose runtime systems which allocate
and not reclaim the space.

claim07 Procedure which declares an unconstrained type as
a private type within a nested generic package.
This might allocate and not reclaim storage.

claim08 Package with an unconstrained array type (STRING)
as as a private type within a generic package.

Actual formal parameter instantiates with length 8.
This might allocate and not reclaim storage.
claim09 | Use a GOTO to exit a nested FOR loop. This might
implicitly allocate space which is not reclaimed.

claim10 ' | Use a GOTO to exit from nested DECLARE blocks. This

might implicitly allocate space which is not
reclaimed.

claimll Raise on exception to exit from a nested FOR loop.
This might implicitly allocate space which is not
reclaimed.

claim12 Raise an exception to exit from nested DECLARE
blocks. This might implicitly allocate space which
is not reclaimed.

21

Problem Test Name | Problem Test Description

claim13

Raise an exception to exit from nested DECLARE
blocks where the blocks have exception handlers.
This might implicitly allocate space which is not
reclaimed.

claim14

Expression containing two function calls on a
function with side effects returning an
unconstrained type. The first time it is called

it will return a string, the second time it will
raise a predefined exception by dividing by zero.

claim1b

Expression containing two function calls on a
function with side effects returning an
unconstrained type. The first time it is called
it will return a string, the second time it will
raise a user defined exception.

claiml6

Problem declaring nested discriminated objects
within a nested package. The concern is that the
system might allocate space and not reclaim it.

claim17

claiml8

Problem which uses the 'IMAGE attribute. This might
cause some systems to allocate and not reclaim space.
100.000 executions per timing loop iteration.

Boolean operator on arrays requiring temporaries.

Some systems may allocate and not reclaim space here.

claiml9

claim20

Boolean operator on arrays requiring temporaries
where an exception is raised part way through the
evaluation. Some systems may allocate and not
reclaim space here.

Catenation of array slices where temporaries are
required. Some system may allocate and not reclaim
space.

claim?21

Catenation of array slices where temporaries are
required where an exception will be raised by the
execution of the problem. Some system may allocate
and not reclaim space.

22

Problem Test Name [Problem Test Description

claim22 Catenation of array slices where temporaries are
required to save the results of function calls and
where an exception will be raised. Some system may
allocate and not reclaim the space.

claim23 Problem performs 1/0 to and from a string. Some
systems may allocate and not reclaim the space.
claim24 Problem performs I/0 to and from a file. Some
systems may allocate and not reclaim the space.
claim25 Problem instantiates enumeration_io multiple times.
Some systems might allocate and not reclaim space.
cdaim26 | Problem which allocates a record with a dynamically

sized component and explicitly deallocates the
record. 100 000 executions per *‘ming loop
iteration.

claim27 Problem which allocates a record with a dynamically
sized component and implicitly deallocates it.
100000 executions per timing loop iteration.

claim28 o Problem which performs a SELECT with multiple open’
alternatives within a declare block.
claim29 Problem which performs a SELECT with multiple open

alternatives where the SELECT is not within a
declare or subprogram defining an exception handling
frame. This is similar to CLAIM28 except that some
systems might not reclaim space for SELECT
temporaries until a frame is exited.

claim30 Problem which performs a SELECT with DELAY
alternatives where no alternative is immediately
open but where alternative is satisfied before
DELAY expires. The concern is that the system
DELAY queue might fill up with dummy entries and
the space used not be reclaimed.

23

Problem Test Namel Problem Test Description

claim31 Problem which performs a SELECT with DELAY
alternatives where no alternative is immediately
open but where alternative is satisfied before
DELAY expires. The concern is that the system
DELAY queue might fill up with dummy entries and
the space used not reclaimed. This is similar to
CLAIM30 except that the entry call loop does NOT
contain an exception handling frame.

claim32 Problem which performs a timed entry call which

is not immediately callable. Because of task

priorities, a DELAY alternative is taken, and

the lower priority task should then be scheduled

and become callable. The concern is that the

system DELAY queue might fill up with dummy entries
and the space not be reclaimed.

claim33 | Problem which performs a timed entry call which
is not immediately callable. Because of task

priorities, a DELAY alternative is taken, and

the lower priority task should then be scheduled

and become callable. The concern is that the

system DELAY queue might fill up with dummy entries
and the space not be reclaimed.

Different from claim32 in that the loop performing
entry calls is NOT in an exception handling frame.
claim34 Create a task which immediately terminates.
The concern is that the system may allocate space

for task control blocks and not reclaim it.

claim35 Create a task which immediately terminates.
The concern is that the system may allocate space
for task control blocks and not reclaim it.

claim36 Problem which create a task and aborts it. The
concern is that the system may allocate space for
task control blocks and not reclaim it.

24

Problem Test Name { Problem Test Description

claim37 Problem which create a task and aborts it. The
concern is that the system may allocate space for
task control blocks and not reclaim it. This
differs from claim36 in that the loop repetitively
creating and aborting tasks does not contain an
exception handler,

claim38 Problem elaborates a declarative region including
assigning to object in a collection before calling
on a function which raises an exception before
leaving the declarative region.

claim39 Problem calls on function CLOCK. Some system may
allocate and not reclaim space.
claim40 Test function returning a discriminated record which

contains variable sized components. This might
expose runtime systems which allocate and not
reclaim the space. This is a version of claim01

with function specified as INLINE.

claim41 recursive function returning an unconstrained
STRING type. This might expose runtime systems
which allocate and not reclaim the space.

This is a version of CLAIM02

with function specified as INLINE.

claim42 Test function returning a discriminated record which
contains one variable sized component. This might
expose runtime systems which allocate and not
reclaim the space. This is a version of claim03 with
function specified as INLINE.

claim43 Test function returning a discriminated record which
contains multiple discriminated records. This might
expose runtime systems which allocate and not
reclaim the space. This is a version of claim04 with
function specified as INLINE.

25

Problem Test Name] Problem Test Description

claim44

Test function returns a "large” (1000 character
array) fixed size type. This might expose runtime
systems which allocate and not reclaim the space.
This is a version of claim05 with function specified

as INLINE.

claim45

Test function returns a "small” (20 character
array) fixed size type. This might expose runtime
systems which allocate and not reclaim the space.
This is a version of claim06 with function
specified as INLINE.

claim46

claim47

Expression containing two function calls on a
function with side effects returning an
unconstrained type. The first time it is called

it will return a string, the second time it will

raise a predefined exception by dividing by zero.
This is a version of claim14 with function specified
as INLINE.

Expression containing two function callsona
function with side effects returning an
unconstrained type. The first time it is called

it will return a string, the second time it will

raise a user defined exception. This is a version

of claim15 with function specified INLINE.

common

Optimization test constructed with many
common subexpressions

complex record01

complex_record02

complex_record03

Copy a field in a nested record definition to a simple
variable. Variable is a packed enumeration type with
a T'SIZE clause specified.

Copy a simple variable to a field in a nested record
definition.

Reference a field in a nested record definition

In an expression.

26

Problem Test Name | Problem Test Description

complex record04 Pass a field in a nested record definition as an
actual parameter to an IN OUT mode parameter.

complex_record05 Copy a nested variant record to another record.

complex_record06 Compare variant records, one of which is nested
within another record definition.

complex_record07 Copy a field which is itself a record.

complex_record08 Pass a field which is a record embedded in a higher

order record definition as an IN mode parameter to
a subprogram.

complex_record09 Pass a field which is a record embedded in a higher
order record definition as an IN OUT mode parameter
to a procedure.

consistentl This sequence of tests executes an |IF statement which
evaluates to FALSE, skipping the THEN part. Various
numbers of statements are included in the THEN part to
observe if the execution time is constant, as it would
be if the condition always generated the same code to
evaluate the condition and branches around the THEN
clause and then this code always executes in the same
amount of time. Differences can be caused by length
of the branch required to skip over the THEN clause,
or by alignment of the instructions. This problem

has a simple procedure call in the THEN clause.

consistent? This is one of the CONSISTENT family of problems. It
has two simple procedure calls in the THEN clause.
consistent3 This is one of the CONSISTENT familv of problems. It
has three simple procedure calls in the THEN clause.
consistent4 This is one of the CONSISTENT family of problems. It
has four simple procedure calls in the THEN clause.
consistent5 This is one of the CONSISTENT family of problems. It
has five simple procedure calls in the THEN clause.
consistent6 This is one of the CONSISTENT family of problems. It

has 100 simple procedure calls in the THEN clause.

27

Problem Test Name

Problem Test Description

consistent?

crc0

This is one of the CONSISTENT family of problems. It
has a declare block with 100 procedure calls in the

A THEN clause.

Initializes cyclic redundancy check lookup
tables. Test will fail if unique numbers
are not generated.

| check bytes are not those expected.

Perform a CRC calculation on a string of length one.
Test will fail if the values generated for the CRC

“Perform a CRC calculation on a string of length 100.

Test will fail if the values generated for the CRC
check bytes are not those expected.

cre3

crcd

Perform a CRC calculation on a string of length 200.
Test will fail if the values generated for the CRC
check bytes are not those expected.

| Perform a CRC calculation on a string of length 400.

Test will fail if the values generated for the CRC
check bytes are not those expected.

csel

cse?

Set of tests to see if compiler recognized common

subexpressions across subprogram calls. CSE1 uses
local variables with intervening procedure calls. It

can be validly optimized.

| Set of tests to see if compiler recogmzed common

subexpressions across subprogram calls. CSE2
evaluates the expression once and saves it in a local
variable. If the time for CSE1 and CSE2 are
comparable, then the system is doing common
subexpression elimination.

cse3

Set of tests to see if compiler recognized common
subexpressions across subprogram calls. CSE3
evaluates the expression without intervening
subprogram calls. A system might recognize these as
common but not CSEL.

28

Problem Test Naime | Problem Test Description

csed

Set of tests to see if compiler recognized common
subexpressions across subprogram calls. CSE4 uses
global variables and is NOT really common. If the
time for it is equal to CSE1, then common
subexpressions are NOT recognized across subprogram
calls.

cseb

Set of tests to see if compiler recognized common
subexpressions across subprogram calls. CSE1 uses
local variables with intervening procedure calls.
The subscript expression (i, i, i) is common and
references to it can be validly optimized.

cseb

cse?

cse8

Set of tests to see if compiler recognized common
subexpressions across subprogram calls. CSE6
evaluates the expression once and saves it in a local
variable. If the time for CSE5 and CSE6 are
comparable, then the system is doing common
subexpression elimination.

Set of tests to see if compiler recognized common
subexpressions across subprogram calls. CSE7
evaluates the expression without intervening
subprogram calls. A system might recognize these as
common but not CSES.

Set of tests to see if compiler recognized common
subexpressions across subprogram calls. CSE8 uses
global variables and is NOT really common. If the
time for it is equal to CSE5, then common
subexpressions are NOT recognized across subprogram
calls.

cse9

Common subexpression separated by conditional
procedure call. Saving and restoring register values is possible
but may not be profitable.

csel0

conditional procedure call.

Common subexpression using global separated by

29

Problem Test Name

Problem Test Description

d library 1

This set of test problems measure package elaboration
times, in particular library package elaboration time
for packages which declare objects of non-static sizes.
This problem contains a declare block defining a type,
no objects, and a null body. It can be translated into
a null.

d_library_2

This is one of the d_library_* family of test
problems. This problem contains a declare block defining a type,
no objects, and a body with one procedure call.

d library 3

dibrary5

contains one procedure call.

This is one of the d library * family of test
problems. This problem contains nested package declarations
defining 4 dynamically sized arrays. Package body

This is one of the d_library_* family of test
problems. A declare block which allocates 4 dynamically sized
arrays on a heap in a named collection and deallocates

them via UNCHECKED_DEALLOCATION. The allocation is
expected to be roughly comparable to the overheads of
allocating dynamically sized objects in a library

package.

d library 6

| sized objects in a library package.

This is one of the d library * family of test

problerns. A declare block which allocates 4 dynamically sized
arrays on a heap in a named collection and reclaims

space by exiting the block the collection is deciared

in. The allocation is expected to be roughly

comparable to the overheads of allocating dynamically

30

Problem Test NameJ Problem Test Description

d library 7

This 1s one of the d library * family of test

problems. Measurement of time to elaborate 5 library packages
which allocate 4 dynamically sized arrays (same 4 as

used in the other problems in this set). The

measurement of this problem has coarser error bounds

because it must use a variation of the timing loop

code since it is not possible to force the system to

elaborate a library package more than once per program
execution.

d_library_8

dead

delayl

This is one of the d_library_* family of test

problems. This problem is a versions of d_library_7 using nested
packages rather than library packages. It can be much
faster than d library 7 because a simpler (stack
based) storage allocation scheme can be used for
nested packages.

Optimization test; constructed so that systems

which do dead assignment elimination will do well
Language feature test, delay statements .
contending tasks, "DELAY 0.0;,” All the DELAY
problems are given an error code as they will

be ignored by MEDIAN. DELAY problems do not
follow the basic ACEC modeling assumption that

the execution time for a problem is approximately the
product of a system factor and a problem factor.

The execution time for a (long) DELAY statement
should be roughly constant and implementation
independent - a fast system should not execute a
DELAY 1.0; faster than one second! If measurements
are made using CPU time, then the modeling assumption
would apply, but that is not expected to be the
primary mode of operations.

delay?2

Language feature test, delay statements
contending tasks, delay 0.000001;

31

Problem Test Name [Problem Test Description

delay3 Language feature test, delay statements
contending tasks, delay 0.000010;

delay4 Language feature test, delay statements
contending tasks, delay 0.000100;

delay5 S Language feature test, delay statements
o - | contending tasks, delay 0.001000;
delay6 Language feature test, delay statements

contending tasks, delay 0.0100000;

delay? Language feature test, delay statements
contending tasks, delay 0.1000000;

delay8 Language feature test, delay statements
no contending tasks, delay 0.000000;

delay9 Language feature test, delay statements
no contending tasks, delay 0.000001;

delaylo Language feature test, delay statements
no contending tasks, delay 0.000010;

delay11 ~ | Language feature test, delay statements
no contending tasks, delay 0.000100;

delayl2 Language feature test, delay statements
no contending tasks, delay 0.001000;

delayl3 Language feature test, delay statements
no contending tasks, delay 0.010000;

delayl4 Language feature test, delay statements

no contending tasks, delay 0.100000;

delay_abort1 ~ | Tests whether the target system terminates an abnormal
task at a DELAY 0.0 statement. If the system does not
print an execution time error code for this statement,
the system is properly terminating the aborted tasks
before the DELAY 0.0 statement finishes.

delay_abort2 Test whether a system immediately kill a task which

is aborted while in the middle of a DELAY or whether

it waits until the DELAY completes.

32

Problem Test NameJ Problem Test Description

delay zeroQ

One of a set of test problems to determine how a
system

treats the interaction of task switching and delay
statements. In all problems in this set, there are two
equal priority tasks which invoke a routine CHECKIN,
passing the identification of the calling task, which
detects whether there has been a task switch since the
last time CHECKIN was called. This version implements
CHECKIN as task entry, updating the task switch counter
and old task identification within a rendezvous. It

can detect whether the system is using a time-slice

or a run-till-blocked task scheduling algorithm.

33

Problem Test NameJ Problem Test Description

delay zerol

delayzero2

delay_zero3

| One of the DELAY_ZERO family of test problems. This

_QpBATION_ZERO bt_atween calls on CH_l_ECKIN.

One of a set of test problems to determine how a system
treats the interaction of task switching and delay
statements. In all problems in this set, there are the two
equal priority tasks which invoke a routine CHECKIN,
passing the identification of the calling task, which

detects whether there has been a task switch since the

last time CHECKIN was called. This version implements
CHECKIN as a procedure, has no DELAY statements between
between calls on CHECKIN, and assumes that the user has
requested a time-sliced task scheduling algorithm.

One of the DELAY_ZERO family of test problems. This
version implements CHECKIN as a procedure which
updates the task switch counter and old task
identification. This problem requests time-sliced

task scheduling and inserts a literal DELAY 0.0 between
calls on CHECKIN.

version implements CHECKIN as a procedure. It requests
time-sliced task scheduling and inserts a DELAY

34

Problem Test Name LProblem Test Description

delay zero4 One of the DELAY _ZERO family of test problems. This
version implements CHECKIN as a procedure. It requests
run-till-blocked task scheduling and inserts no DELAY
statement between calls on CHECKIN.

delay zero5 One of the DELAY _ZERO family of test problems. This

version implements CHECKIN as a procedure. It requests
run-till-blocked task scheduling and inserts a literal

DELAY 0.0; statement between calls on CHECKIN.

| One of the DELAY_ZERO family of test problems. This
version implements CHECKIN as a procedure. It requests
run-till-blocked task scheduling and inserts a

DELAY DURATION_ZEROQ; statement between calls on CHECKIN.

-delay_zeroé o

delay_zerobx One of the DELAY_ZEROQ family of test problems. This
version implements CHECKIN as a procedure. It uses

system default task scheduling and inserts a
DELAY DURATION ZERO; statement between calls on CHECKIN.

delay zero7 One of the DELAY ZERO family of test problems. This
version executes a DELAY DURATION_ZERO; with one
other task in the system waiting on the delay queue.
delay_zero8 One of the DELAY_ZERO family of test problems. This
version executes a DELAY DURATION_ZERO; with two
other tasks in the system waiting on the delay queue.

35

Problem Test NameiProl)lem Test Description

desl The Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Problem
initializes data structures and calls on DES twice to
encrypt and then decrypt a message.

des?2 Data Encryption Standard (DES) algorithm is used as an
example of a nonnumeric application. Version 2 uses
unpacked boolean arrays, indexing operations.

des3 Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Version 3
moves constant array declarations to global scope;
uses unpacked boolean arrays, indexing operations.

des4 Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Version
4 separates initialization into a separate procedure.
Uses unpacked boolean arrays, indexing operations.
This (DES4) includes both initialize and call on the
DES to encrypt and decrypt a message.

desda Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Version
4 separates initialization into a separate procedure.
Uses unpacked boolean arrays, indexing operations.
This (DES4a) is the initialization procedure by
itself.

des5 Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Version
5 is similar to version 4 using packed arrays.

DESb5a is the setup procedure.

des5a Data Encryption Standard (DES) algorithm. Version
5 is similar to version 4 using packed arrays.
DESS5a is the setup procedure.

36

Problem Test Name [Problem Test Description

des6

desba

Data Encryption Standard (DES) algorithm is used an
example of a nonnumeric application. Version 6 uses
logical operators of unconstrained packed boolean
array types to set bits. Has separate initialization
procedure. This problem (DES6) includes initialization
and two calls on DES, one to encrypt and one to
decrypt.

Data Encryption Standard (DES) algorithm. Version 6
uses logical operators of unconstrained packed boolean
array types to set bits. DES6a is the initialization
procedure.

des7

Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Version
7 uses constrained types. This (DES7) calls on an
initialization procedure and two calls on DES to
encrypt and decrypt a message.

des7a

Data Encryption Standard (DES) algorithm is used
as an example of a nonnumeric application. Version
7 uses constrained types. This (DES7) calls on an
initialization procedure and two calls on DES to
encrypt and decrypt a message.

dhrysl_mod
dhrys2_mod

dhrys3_mod

Classical test, synthetic benchmark, Dhrystone
without suppression.

Classica! test, synthetic benchmark, Dhrystone with
suppression.

Classical test, synthetic benchmark, Dhrystone with
suppression and PRAGMA OPTIMIZE(SPACE)

37

Problem Test Name [Problem Test Description

elabl

These sets of tests examine system performance on
test problems (compiled without suppression) which
contain calls on subprograms declared in external
procedures. They are designed to test if the system
optimized some (any) of the elaboration checking code
required to verify that the package body has been
elaborated before subprograms in it are called.
Because the calls are in a conditional statement, an
optimizing compiler cannot move the elaboration check
code out of the timing loop. This problem calls one
procedure five times in a row. A good compiler would
only generate code to perform one test.

elabl0

Version of elab5 which specified suppression of
predefined constraint checking.

elab?2

elab3

elab4d

These is one of the elab* set of test problems. This
problem calls different procedures defined in

different packages five times in a row. Because the

calls are in a conditional statement, an optimizing
compiler cannot move the elaboration check code out of
the timing loop. Relative to ELAB1, this version must
include 5 separate pieces of checking code.

These is one of the elab* set of test problems. This
problem calls the same procedure four times in a row
unconditionally and then tests the condition and calls

it one more time. An optimizing compiler could move
the elaboration checking code out of the timing loop.
These is one of the elab* set of test problems. This
problem conditionally calls on five different

procedures defined in the same package. Similar to
ELABI, an optimizing compiler could share the checking
code for the package body elaboration.

38

Problem Test Name LProblem Test Description

elabb This problem calls one procedure five times in a row
within a conditional statement. The procedure is in
a package which has a PRAGMA ELABORATE specified,
permitting an optimizing compiler to omit checking
code because the PRAGMA guarantees prior elaboration.

elabb Version of elabl which specified suppression of
predefined constraint checking.

elab7 Version of elab2 which specified suppression of
predefined constraint checking.

‘elab8 ~ | Version of elab3 which specified suppression of
_predefined constraint checking.

“elabd | Version of elab4 which specified suppression of
predefined constraint checking.

enum iol Instantiate enumeration io in declare block, is
amenable to loop invariant motion.

enum i02 Instantiate enumeration io in declare block twice, is
amenable to loop invariant motion and can be shared.

enum.io3 Instantiate enumeration_io in declare block twice, is
amenable to loop invariant motion and can’t be shared.

enum.od Instantiate float_io in declare block. Is amenable to
loop invariant motion.

enum.io5 Instantiate float_io twice in declare block. Is o
amenable to loop invariant motion and can be shared.

enum 106 Instantiate integer 10 in declare block. Is
amenable to loop invariant motion.

enum_io7 Instantiate integer io twice in a declare block. [s
amenable to loop invariant motion and can be shared.

enum_io8 elaborate enumeration_io in library packages. Not
sharable.

enum_io9 elaborate sharable versions of enumeration_io in

library packages

39

Problem Test Name LProblem Test Description

ew

This is an example drawn from an Electronic Warfare
application feasibility study. The design intends to
perform /O operations using a coprocessor with shared
memory (the Z80-FIFQO). This was modified for testing
purposes to "build in” a set a message to exercise the
system. Some of the coding style used in this program
is rather strange and the system has not been fully
debugged. Some procedures referenced uninitialized
variables, and have been modified to avoid this usage
(or to insure that these procedures are not called

with the test data. As a compilation test, it uses

both subunits and packages. The original version was
not fully debugged, and the test problem constructed
from it does not exercise all the intended functions of
the application, because it was not appropriate for
ACEC team to complete and debug the code. Some of the
original code was modified (marked by "— tcl”) to
permit execution - the original version contained
several errors which were worked around.

filterl

Object oriented design approach to implementing a lag
filter. This problem declare the filter parameters as
formal parameters to a generic definition of a filter.
The generic procedures associated with the filter do
not pass any explicit parameters. This test problem
resets the filter history.

40

Problem Test Name l Problem Test Description

filterli

filter2

Object oriented design approach to implementing a lag
filter. This problem declare the filter parameters as
formal parameters to a generic definition of a filter.
The generic procedures associated with the filter do
not pass any explicit parameters. This test problem
resets the filter history - it is an inlined version

of filterl.

Object oriented design approach to implementing a lag
filter. This problem calls on a generic instantiation

of a template encapsulating INPUT, OUTPUT, HISTORY,
and COEFFICIENT. It advances one time step.

filter2i

Object oriented design approach to implementing a lag
filter. This test problem is a variation of FILTER2
with pragma inline specified for procedure ADVANCE.

filter3

filterd

Object oriented design approach to implementing a lag
filter. This problem passes the filter parameters as
actuals to a non-generic procedure. This test problem
advances one time step.

Object oriented design approach to implementing a lag
filter. This test problem advances one time step with
direct “manual insertion” of source code.

firthl

Example of record assignment

firthlx

Version of FIRTH1 performed with
component-by-component assignment. A system with reasonable record
processing should perform FIRTH1 and FIRTH1X in comparable times.

firth2

Example of record comparison

firth2x

Example of record comparison with standardized
boolean. Optimizing compilers should perform FIRTH2 faster than
FIRTH2X.

41

Problem Test Name LProblem Test Description

firth2y Example record comparison using component-by-component
operations. Many systems will call on a runtime

library routine to perform a record comparison. An
optimizing compiler which performed this comparison

using inline code will execute FIRTH2Y and FIRTH2 in

comparable times.

firth3 Example of record aggregate assignment with one
component being assigned the same value.

fith3x | Component-by-component version of FIRTH3, with
redundant component assignment eliminated.

firth4 Use IN operator which has been observed to do poorly
on some systems.

firthdx Version of FIRTH4 using relational operators rather
than IN operator.

firth Example where tailoring subprogram linkage conventions

can provide significant performance advantages. The
set of examples can show whether the system uses
different linkage conventions where profitable -
whether there are profitable alternatives depends on
target machine.

firthbv Example where tailoring subprogram linkage conventions
can provide significant performance advantages.
firthbw Example where tailoring subprogram linkage conventions

can provide significant performance advantages. Uses a
local procedure named in a pragma INLINE.

firth5x Example where tailoring subprogram linkage conventions
can provide significant performance advantages.

firthSy Example where tailoring subprogram linkage conventions
can provide significant performance advantages.

firthSz Example where tailoring subprogram linkage conventions

can provide significant performance advantages.

42

Problem Test Name l Problem Test Description

firth6

firth6x

Example where constant folding and value propagation
will have a large payoff. An optimizing compiler

could make this comparable to 3 simple assignments.
Example where constant folding and value propagation
will have a large payoff. Hand optimized version of

FIRTH®6.

firth7

Example where constant folding and value propagation
will have a large payoff.

firth7x

Hand optimized version of FIRTH7 for comparison.

fold1

The FOLD1-4 set of test problems are intended to
determine whether a compilation system is performing
loop invariant motion and NOT performing constant
folding for integers, by comparing the performance of
a set of test problems which could be folded both in
contexts where loop invariant motion is possible and
where it is not. This test problem is "ii:=100;" which
has a simple translation independent of folding and/or
loop invariant motion.

fold2

This test problem is "ii:=1+1+1...;" which is amenable
to both folding and loop invariant motion.

fold3

fold4

This test problem is a call on a procedure containing
"1i:=100;"

This test problem calls on a procedure containing
"ii:=141+41...." which is amenable to folding but not
loop invariant motion.

43

Problem Test Name [Problem Test Description

fold5

The FOLD5-8 set of test problems are intended to
determine whether a compilation system is performing
loop invariant motion and NOT performing constant
folding for integers, by comparing the performance of a
set of test problems which could be folded both in
contexts where loop invariant motion is possible and
where it is not. This test problem is " xx:=100.0;"
which has a simple translation independent of folding
and/or foop invariant motion.

fold6

This test problem is "xx:=1.0+1.0+...;” which is
amenable to both folding and loop invariant motion.

fold7

This test problem is a call on a procedure containing
"xx:=100.0;" which inhibits both folding and loop
invariant motion.

fold8

This test problem calls on a procedure containing
"xx:=1.04+1.0+...;" which is amenable to folding but not
loop invariant motion.

fold_mod

forward_eulerl

forward _euler?

Optimization test. Constructed so that systems
which perform folding will do well.

Adapted from a radar application. Contains 12 trig
function calls, half of which are duplicates (same
function, same actual parameters). Compare with
Forward_Euler2, which saves function results and
omits half the function calls.

Adapted from a radar application. Compare with
Forward_Eulerl. This version saves function results
and omits half the function calls.

funcexcp To measure the time associated with cleaning up the
stack when an exception is raised during nested function
calls.

gamm Classical test, emphasizes 1-D array access, simple

6 digits precision floating point arithmetic.

44

Problem Test NameiProblem Test Description

gamm?2

Classical test, emphasizes 1-D array access, simple
extended precision (9 digit) floating point arithmetic

heapify

Classical test, from CFA study, partial sort.

idioms

Test constructed so that a system which does a good
job on common machine idioms will do well. This is
a property of both compiler and the target machine
architecture.

instl

test of performance of instantiating and using the
generic package ENUMERATION.IO.

inst2

test of performance of instantiating and using the
generic package ENUMERATION_IO. This problem
uses a previously instantiated package and does a
PUT to a string.

inst3

This problem copies from array of strings to string,
performing similar operation to INST1, INST2, and
INST4.

inst4

test of performance of instantiating and using the
generic package ENUMERATION_IO. This problem
does a string assignment corresponding to the

PUT in INST1 AND INST2 from a variable using the

‘image attribute.

insth
int_0

int.1

| simple literal string assignment.

This problem uses a CASE statement to select a
 Timing of a simple task. No interrupt is raised in
this test. It is used for purposes of comparison.
Interrupt test. Time simple interrupt. . Raise
interrupt and test a flag which is set by the
handler. The interrupt task is initiated from the

mam task

45

Problem Test Name LProhlem Test Description

int 2 Task switching. An interrupt enables a task with

a higher priority than the task which was running
when the interrupt occurred. After the interrupt has
been serviced, the higher priority task, not the one
running when the interrupt occurred, will be

scheduled.

int_3 Timing of a simple interrupt is complicated by
having several tasks on a wait queue.

int_4 There are several runable tasks eligible at all times.

These tasks have a lower priority that the task
performing the null timing loop, and should not be
executed.

int.5 An exception is raised within the rendezvous of the
interrupt entry call. This problem tests for the
performance impact of raising exceptions inside
the rendezvous.

int 6 Int 6 is identical to the structure of Int 5 without
raising the exception. It is used to compare the
time required by exception handling.

int_7 ' Int_7 tests the response time when an interrupt
occurs during an interrupt handler. As the interrupt tasks
have the same priority, this test will also check
whether an interrupt will override an interrupt
handler. The LRM is not clear in specifying that
interrupt tasks must have priorities. It is
permissible for all interrupts to be treated the
same and not preempt each other.

int_8 Int_8 tests the response time when an interrupt
occurs during an interrupt handler. Int_8 is similar
to Int_7 except the second interrupt task has a
higher priority than the executing interrupt. This
test will determine whether priorities are
recognized by the handler.

46

Problem Test Name | Problem Test Description

int 9

Int 9 tests the response time when an interrupt
occurs during an interrupt handler. Int_8 is similar
to Int_7 except the second interrupt task has a
higher priority than the executing interrupt. This
test will determine whether priorities are
recognized by the handler.

invar

io0

iol
i02

Optimization test. Constructed so that systems which

| do a good job of loop invariant motion will do well.
Language feature test. Text_|O, Set_Col on named file.

Language feature test. Text_lO, OPEN/CLOSE
Language feature test. Text_lO, Open file, Put 1000
80-character lines, Close file. Writing 80,000

bytes will cause most systems to perform several
physical |/O operations.

103

io4

Language feature test. Text 10, Open file, use Get
of character to read the 1000 80-character records
written in 102, Close the file.

Language feature test. Text_lO, Open file, use
Get Line to read the 1000 80-character records
written in i02, Close the file.

105

i06

Language feature test. Text |0, Open file, use
Put_Line to write 1000 80-character records, Close the
file.

‘Language feature test. Text_lO, Open file, use Put to

write 100 512-bytes records, Close the file. The
records contain 1 6-byte count field, and 406 bytes of
blanks.

io7

io8

Language feature test. Text_lO, Open file, use
Get_Line to read the 100 512-byte records written in

| 106, Close the file.

Language feature test. Text 10, access the
end of file function.

109

Language feature test. Text 10, Reset function.

47

Problem Test Name [Problem Test Description

1010 Language feature test. Text 10, Is.Open function.

ioll Language feature test, direct file io, Set Index
function.

012 Language feature test, direct file io, Set_Index
function followed by a READ. This will read from the
same block so no physical 1O operations are required.
This block i1s read once outside the loop to set the
buffers.

1013 Language feature test, direct file io, Set_Index
function, followed by a WRITE. This will write to the
same block each time.

014 7 " | Language feature test, direct file io, OPEN/CLOSE.

iol5 | Language feature test, direct file io. Call on the
Index function.

1016 Language feature test. Direct file io; call on Size
function.

1017 Language feature test, sequential file, OPEN/CLOSE.

1018 Language feature test, sequential file,

OPEN file, WRITE 1000 80 byte records, CLOSE file.
iol9 Language feature test, sequential file,

OPEN file, READ 1000 80 byte records, CLOSE file

This reads the file written by i018.

1020 Language feature test, sequential file,
call on END OF FILE function.

1021 Language feature test, sequential file,

OPEN file, WRITE 100 511 byte records, CLOSE file.

1022 Language feature test, sequential file,

OPEN file, READ 100 80 byte records, CLOSE file.
This reads the file written in i1021.

023 ‘ ‘Language feature test, sequential file,
call on SET_INPUT procedure.

1024 Test of PUT to an interactive console. This
problem PUTs an ASClI carriage return

48

Problem Test Name] Problem Test Description

1025

Test of PUT to an interactive console. This problem
PUTs a string and then an ASCII carriage return

i026
027

{028

| Test of PUT to an interactive console. This

Test of PUT to an interactive console. This problem
PUTs a string and then an ASCI! carriage return

problem PUTs an ASCIl nul character

put(” a" & ascii.cr); to console.

Rewriting the same line to the console repetitively

can be optimized by a ~mart screen manager which could
not send any terminal commands which will not change
the display. Relative to 1029, this problem performs

only one call on procedure PUT.

1029

i030

Put "A” & ascii.cr to console. Rewriting the same line
to the console repetitively can be optimized by a

smart screen manager which could not send any terminal
commands which will not change the display.

Display variable character & ascii.cr. Compare with

1028

0 8020 1

I/O pattern test problem. The 10 80.20 family of test
problems considers random file processing. This
problem performs 1.000 reads from direct file with 100
records using a 80-20 distribution. Problem will do
well on systems with buffering or cache since the file
could fit entirely in memory.

10 80 20 2

1/O pattern test problem. Performs 1.000 reads from
direct file with 1.000 records using a 80-20
distribution. Problem will do well on systems with
buffering or cache most of time file could fit in
memory.

10 80 20 3

I/O pattern test problem. Performs 1 000 reads from
direct file with 10_000 records using a 80-20
distribution.

49

Problem Test Name i Problem Test Description

i0 80.20 4

I/O pattern test problem. Performs 1.000 reads from
direct file with 10_000 records using a 80-20
distribution, after sorting the requests. Because
requests are sorted, the sequence of requests will be
strictly non-decreasing and average distance between
requests will be small and all the requests to the
same block will be processed before another block is
accessed. Comparison with io 80 20 3 will show
performance effect of sorting batches of transactions.

10.80.20.5

I/O pattern test problem. Performs 1.000 reads from
direct file with 100_000 records.

10.80-20_6

i0.80.20_7

i0-80-20.8

i0.80.20_9

| reflect physical 1/Q time. - : |
I/O pattern test problem. Performs 1_.000 sequential

I/O pattern test problem. Performs 1_.000 reads from
direct file with 100000 records, after being sorted.
|/O pattern test problem. Performs 1.000 sequential
reads from direct file, resetting after scanning 10
Mbytes. Because the file is large, the value of a
small cache is limited. Measurements should

reads from direct file, resetting after scanning 1
Mbytes. Because the file is large, the value of a
small cache is limited. Measurements should

reflect physical I/O time.

I/O pattern test problem. Performs 1.000 sequential
reads from direct file, resetting after scanning 10
Kbytes. Because the file is small, the value " a
small cache is enhanced.

10.80.20.10

1/O pattern test problem. Performs 1_.000 sequential
reads from direct file, resetting after scanning 1.000
bytes. Because the file is small. the value of a

small cache is enhanced.

50

Problem Test Naime i Problem Test Description

10 copyl

I/O pattern test. The IO COPY* problems are tests of
sequential processing. This problem copies a

sequential file with 500 100-byte records by reading
one record at a time and writing it. This produces
1000 1/0 operations.

10 copy2

I/O pattern test. copy sequential file with 500
100-byte records by reading 100 records into

a buffer and writing the buffer. This produces 1000
I/O operations. Could be faster than 10 .COPY1 if the

system doesn’t perform any buffering.

io copy3

1/O pattern test. Copy direct file with 500
100-byte records by reading one records into

a buffer and writing the buffer. This produces 1000
I/O operations. Compare with sequential file copy

10_COPY1.

1o copyd

1/O pattern test. Copy direct file with 500

100-byte records by reading 100 records into

a buffer and writing the buffer. This produces 1000
[/O operations. Could be faster than |10 COPY3 if the
system doesn’t perform any buffering.

io interl

1/O pattern test. The 10 INTER* family of test

problems considers interleaved sequence of simple 1/O patterns.

This test problem alternately reads from two
sequential files, each of 500 100-byte records.

jo_inter2

I/O pattern test. This test problem alternately reads
from a sequential and a direct file of 500 100-byte
records.

jo_inter3

I/O pattern test. This test problem alternately reads
from a sequential file and then reads and writes to
one record in a direct file.

51

Problem Test Name] Problem Test Description

io meml I/O pattern test. The IO MEM* family of test problems
performs patterns of accessing on an array in memory
which can be compared to the corresponding file |/O
patterns. This ‘est problem references 1000 records
from an array in ascending order. It corresponds to

I0_SCANI.

io_mem?2 1/O pattern test. This test problem references 1000
records from an array in descending order. It
corresponds to 10 SCAN3.

io mem3 I/O pattern test. This test problem references 1000
records from an array in descending order. It
corresponds to 10_SCAN4.

io_patternl I/O pattern test. The IO_PATTERN* family of tests
perform simple cyclic patterns of access on a direct
file. This problem uses the constant pattern to read
1.000 records - it reads the same record every time.
A system with buffering will perform well on this.

io_pattern2 I/O pattern test. This problem uses a two record
cycle to read 1.000 records: (r1,r2), (r1,r2), (r1,r2)...
A system with buffering will perform well on this.
jo_pattern3 11/0 pattern test. This problem uses a five record
cycle to read 1.000 records: (r1,r2,r3,r4,r5),
(r1,r2,r3,r3,15),...

A system with buffering will perform well on this.
jo_patternd I/O pattern test. This problem uses a ten record
cycle to read 1.000 records:
(r1,r2,r3,r4,r5,r6,r7,18,r9,10),
(r1,r2,r.3,r4,r5,16,r7,r8,19,10), ..

A system with ten buffers can perform well on this.
io_pattern5 7 I/O pattern test. This problem uses a one record
cycle to write 1.000 records:

rl, r1, 61, 1, 71 ...

A system with buffers can perform well on this.

52

Problem Test Name | Problem Test Description

io pattern6

I/O pattern test. This problem uses a two record
cycle to write 1.000 records:

(r1,r2), (r1,r2), (r1.r2), (r1,r2), (r1,12), ...

A system with buffers can perform well on this.

io pattern?

io_pattern8

io_recurl

I/O pattern test. This problem uses a five record
cycle to write 1 000 records:

(r1,r2,13,r4,65), (r1,r2,r3,r4,15), ...

A system with buffers can perform well on this.
I/O pattern test. This problem uses a ten record
cycle to write 1 000 records:
(r1,r2,r3,r4,15,16,r7,r8,r9,r10),
(r1,,2,r3,r4,r5,¢6,r7,r8,19,r10), ...

A system with ten buffers can perform well on this.

I/0 pattern test. The IO_.RECUR* famlfy of test

problems are composed of cycles of records drawn from a sequence

of uniform distributions. This problem selects from
the sequence (p1-p10, p11-p110, p111-p10000), ...
where the notation pn-pm implies a uniformly
distributed record between N and M. This problem
models the many disc based tree structures.

o recur?

I/O pattern test. This problem selects from the
sequence (pl-p10, p11-p110), ...

This problem models that of many disc based tree
structures when the root is forced to be memory

resident. Buffers and or caches can aid performance.

o recur3

I/O pattern test. This problem selects from the
sequence (pl-pl, pl-p100) ... (always reads pl)
This problem models that of many disc based tree
structures when the root is forced to be memory

resident. Buffers and or caches can aid performance.

53

Problem Test NameJ Problem Test Description

io scanl I/O test pattern. The 10 SCAN* family of test problems
are simple patterns of access (ascending, descending,
uniformly random) which are applied to direct files.

This test problem reads 1000 records in ascending

order.

io scan2 [/O test pattern. This test problem reads 1000 records
in ascending order with a one millisecond delay

between reads. The delay can add enough extra time to
force additional disc revolutions between block reads.

o scan2x 1/O test pattern. This test problem reads 1000 records
in ascending order with a ten millisecond delay

between reads. The delay can add enough extra time to
force additional disc revolutions between block reads.

io_scan3 |/O test pattern. This test problem reads 1000 records
in descending order.
10_scan4 1/O test pattern. This test problem reads 1000 records

using a random permutation of the records - every
record is read.

io_scanb 1/O test pattern. This test problem writes 1000
records to a direct file in ascending order.
io_scan6 1/0 test pattern. This test problem writes 1000

records to a direct file in ascending order with a
1 millisecond delay between each write.

io scan? 1/O test pattern. This test problem writes 1000
records to a direct file in descending order.

io scan8 I/O test pattern. This test problem writes 1000
records to a direct file using random permutation.

io_scanll I/O test pattern. This test problem writes 1000

records to a sequential file. Record type is unconstrained
string, alternating between 50 and 150 bytes.

lo_scanl?2 1/O test pattern. This test problem reads 1000 records
from a sequential file. Record type is unconstrained
string, alternating between 50 and 150 bytes.

54

Problem Test Naime [Problem Test Description

io scanl3

I/O test pattern. This test problem writes 1000
variant records (with maximum size 100 characters) in
ascending order to a direct file. Alternate between
100 and 7 character records.

io scanl4

io_scanlb

1/O test pattern. This test problem reads 1000 variant
records in ascending order from a direct file with
maximum size of 100 characters. Alternate between 100
and 7 character records.

I/O test pattern. This test problem reads 1000 variant
records in random order from a direct file with
maximum size of 100 characters. Alternate between 100
and 7 character records.

io_scanl6

I/O test pattern. This test problem writ ; 1000

variant records in ascending order to a direct file with maximum
size 100 characters. Alternate between 100 and 7

character records.

10 scanl?

jo.scanl8

io_unifl

I/O test pattern. This test problem read 1000 varnant
records in ascending order from a direct file with
maximum size 100 characters. Alternate between 100 and
7 character records.

1/0 test pattern. This test problem reads 1000 variant
records in random order from a direct file with

maximum size 100 characters. Alternate between 100 and
7 character records.

1/O pattern test problem. Performs 1.000 reads from
direct file with 100 records using a uniform

distribution. Systems with buffers or caches may be

able to keep entire file in memory.

io_unif2

I/O pattern test problem. Performs 1.000 reads from
direct file with 1.000 records using a uniform
distribution.

55

Problem Test NameJ Problem Test Description

10 .unif3

io_unif4

1/O pattern test problem. Performs 1.000 reads from
direct file with 10_000 records using a uniform
distribution.

1/O pattern test problem. Performs 1.000 reads from
direct file with 10 000 records using a uniform
distribution after sorting the records.

io unifb

io_unif6

I/O pattern test problem. Performs 1 000 reads from
direct file with 100.000 records using uniform
distribution.

I/O pattern test problem. Performs 1.000 reads from
direct file with 100_000 records using sorted uniform
distribution.

igsort

Classical test, variant of quicksort on integers.

kalman

Application study: Kalman Filter

For the second release, several uninitialized variables
have been assigned values which may modify timings
relative to the first release. This program contain

dummy routines for 1/O operations and may not represent

optimum coding of a Kalman filter. However, even if
the calculates associated with the filter computations
are not correct, as a test problem to exercise an Ada
compilation system it will be useful for the ACEC.

kernell

Classical test, livermore loops, Hydro fragment.

kernel?

Classical test, livermore loops,
Incomplete Cholesky - Conjugate Gradient.

kernel3

Classical test, livermore loops, inner product.

kerneld

Classical test, livermore loops, banded linear
equations.

kernel5

Classical test, livermore loops,
tri-diagonal elimination, below diagonal.

kernel6

Classical test, livermore loops, general
recurrence equation.

56

Problem Test Name l Problem Test Description

kernel7 Classical test, livermore loops, equation of state
fragment.

kernel8 Classical test, livermore loops, A.D.l. (Alternate
Directions Implicit) integration.

kernel9 Classical test, livermore loops, Integrate predictors.

kernel10 Classical test, livermore loops, difference predictors

kerneill Classical test, livermore loops, first sum.

kernell2 Classical test, livermore loops, first diff.

kernell3 Classical test, livermore loops, 2-D particle-in-cell
(P1C).

kernell14 Classical test, livermore loops, 1-D Particle-in-Cell
(P1C).

kernell5 Classical test, livermore loops. Casual FORTRAN
development version (recoded in Ada).

kernell6 Classical test, livermore loops, Monte Carlo search

loop.

kernell6 goto

Classical test, livermore loops, Monte Carlo search

loop; GOTO version.

kernell7 Classical test, livermore loops, implicit conditional
computation.

kernell18 Classical test, livermore loops, 2-D explicit
hydrodynamic.

kernel19 Classical test, livermore loops, general linear
recurrence equations.

kernel20 Classical test, livermore loops; Discrete ordinates
transport, conditional recurrence on xx.

kernel21 Classical test, livermore loops, matrix * matrix
product.

kernel22 Classical test, livermore loops-Planckian distribution

kernel23 Classical test, livermore loops, 2-D implicit B
hydrodynamics fragment.

kernel24 Classical test, livermore loops; Find location of

first minimum in array.

57

Problem Test Naime

Problem Test Description

label Observe the performance of a sequence of label null
statements.

loop0 Classical test, Knuth loop, find max abs of array.

loopl Classical test, Knuth loop, multiple matrix by scalar.

loop2 Classical test, Knuth loop, serial search.

loop3 Classical test, Knuth loop, array computations.

loop4a Classical test, Knuth loop, initialize array with
call on pseudo-random number generator. Function is
in separate package.

loop4b | Classical test, Knuth loop, initialize array with
calls on pseudo-random number generator. Function is
declared inline in same unit.

loop4c Classical test, Knuth loop; Test written as optimized
inline code, compare to loop4b.

loop5 Classical test, Knuth loop, exponentials, array
references.

loop6 Classical test, Knuth loops, inner loop containing
procedure calls.

loop7 Classical test, Knuth loop, squares, sqrt function.

loop8 Classical test, Knuth loop, complex number processing.

loop9 Classical test, Knuth loop, array manipulation.

loop10 Classical test, Knuth loop, conditional testing.

loopll Classical test, Knuth loop, from FFT.

loop12 Classical test, Knuth loop, 3-D array processing,
fairly large basic block.

loop13 Classical test, Knuth loop, binary search.

loopl4 Classical test, Knuth loop, arithmetic example.

loop15 Classical test, Knuth loop, 2-D array processing.

loop16 Classical test, Knuth loop, statistical processing
call on "erf’ function.

loopl7 Classical test, Knuth loop, 1 and 2-D array processing

lu Classical test, LU decomposition (lower-upper matrix

decomposition), from CFA study.

58

Problem Test N amei Problem Test Description

mergel Classical test, mergesort program run on an unsorted
array.

merge?2 Classical test, mergesort program run on sorted array

neural Implementation of an Artificial Intelligence
programming technique.

purel ' This test problem could, if Ada functions were required
to be “pure” (without side effects and always

returning the same function result when given the same
inputs) be optimized by folding. Ada functions are not
required to be pure, and this problem tests that they
have not been improperly optimized.

pure2 This test problem is a version o'f“pu're-l which has been

hand optimized as if it were pure.

pure3 This test problem could, if Ada functions were required
to be “pure” (without side effects and always

returning the same function result when given the same
inputs) be optimized by loop invariant motion. Ada
functions are not required to be pure, and this

problem tests that they have not been improperly

optimized.

pured This test problem is a hand optimized version of PURE3
coded as if function were “pure.”

pure5 This test problem is a version of PURE1 using a function
which is “pure.”

pureb This test problem is a version of pureb5 which has been

hand optimized. This is a pure version of pure2

59

Problem Test Name

I Problem Test Description

pure7 This test problem is a version of pure3 which uses a
pure function.

pure8 This test problem is a version of pure4 using a pure
function.

puzzle - ‘Classical test. F. Baskett's cube placing problem
solver.

gsortl Classical test; median-of-3 nonrecursive quicksort
on an unsorted array.

qsort2 Classical test; median-of-3 nonrecursive quicksort

on a sorted array.

queens mod

Classical test; Eight queens problem.

reclaim collection constrained

reclaim_collection_unconstrained

reclaim_global_heap_constrained

Check for reuse of reclaimed space when an ACCESS type
to a constrained object type is aflocated and then
deallocated in a collection. Determine whether space

is always, never, or sometimes immediately reused.

Check for reuse of reclaimed space when an ACCESS type
to a constrained object type is allocated and then
deallocated in a collection. Determine whether space

is always, never, or sometimes immediately reused.

Check for reuse of reclaimed space when an ACCESS type
to a constrained object type is allocated and then
deallocated in global heap. Determine whether space

is always, never, or sometimes immediately reused.

reclaim_global_heap_unconstrained

Check for reuse of reclaimed space when an ACCESS type
to an unconstrained object type is allocated and then
deallocated in global heap. Determine whether the

space is always, never, or sometimes immediately

reused.

reed _solomon_0

reed _solomon_1

Error Correcting Code example of bit manipulation.
This problem checks that the decoding of an encoded
message is the same as the original message.

Error Correcting Code example of bit manipulation.
This problem encodes a message.

60

Problem Test Name41 Problem Test Description

reed solomon 2 Error Correcting Code example of bit manipulation.
This problem decodes an error free codeword

reed_solomon_3 Error Correcting Code example of bit manipulation.
This problem decodes a codeword which requires
correction.

reed_solomon _4 Error Correcting Code example of bit manipulation.

This problem decodes a uncorrectable_codeword, and
raises an exception to indicate this.

runge Classical test, from CFA study. This problem is one
step of a Runge-Kutta iteration. Runge-Kutta is a
method of solving differential equations.

slibrary 1 | This set of test problems measure package elaboration

times, in particular library package elaboration time

for packages which declare objects of non-static sizes.
This problem contains a declare block defining a type, no
objects, and a null body. It can be translated into a null.
s_library_2 This is one of the s_library_* family of test problems. :
This problem contains a declare block defining a type,

no objects, and a body with one procedure call.

s library 3 This is one of the s library * family of test problems.
This problem contains nested package declarations
defining 4 fixed sized arrays. Package body

contains one procedure call.

61

Problem Test Name | Problem Test Description

s_library_5

This is one of the s_library_* family of test problems.

A declare block which allocates 4 fixed sized

arrays on a heap in a named collection and deallocates
them via UNCHECKED DEALLOCATION. The allocation is
expected to be roughly comparable to the overheads of
allocating fixed sized objects in a library package.

s_library_6

This is one of the s_library_* family of test problems.

A declare block which allocates 4 fixed sized

arrays on a heap in a named collection and reclaims
space by exiting the block the collection is declared

in. The allocation is expected to be roughly comparable
to the overheads of allocating fixed sized

objects in a library package.

s library 7

This is one of the s library * family of test problems.
Measurement of time to elaborate 5 library packages
which allocate 4 fixed sized arrays (same 4 as

used in the other problems in this set). The
measurement of this problem has coarser error bounds
because it must use a variation of the timing loop code
since it is not possible to force the system to

elaborate a library package more than once per program
execution.

62

Problem Test Name | Problem Test Description

s library_8 This is one of the s_library_* family of test problems.
This problem is a versions of s_library_7 using nested
packages rather than library packages. It can be much
faster than s library 7 because a simpler (stack based)
storage allocation scheme can be used for nested packages.

search Classical test. Search for a
substring in a string.

shelil Classical test. Shell sort of an unsorted array.

shell2 Classical test. Shell sort of a sorted array.

sieve Classical test. Determine prime number via Sieve of

Erostaphanes.

simulate_bmbat

Example extracted from application study

simulate_emrpm

Example extracted from application study

simulate_hmproto

Example extracted from application study

simulate qmpitch

Example extracted from application study

simulate rewfrdet

Example extracted from application study

simulate umnav

Example extracted from application study

simulate kmdump

Example extracted from application study

simulate rmkeying

Example extracted from application study

slicel

Determine efficiency of code for length checks and
overlaps for slice assignments.

slice2 Determine efficiency of code for length checks and
overlaps for slice assignments.

slice3 Determine efficiency of code for length checks and
overlaps for slice assignments.

slice4 Determine efficiency of code for length checks and
overlaps for slice assignments.

sliceb Determine efficiency of code for length checks and

overlaps for slice assignments.

63

Problem Test Name l Problem Test Description

slice6 Determine efficiency of code for length checks and
overlaps for slice assignments.

slice7 Determine efficiency of code for length checks and
overlags for slice assignments.

slice8 Assign component by component to a slice with literals
so there is no possibility of overlap.

ssO Language feature test, null statement

ssl Assign floating point variable from literal value.

ss2 Type conversion in static expression — real(1). o

ss2.mod1 Type conversion in static expression — real(1).

ss2_mod2 Type conversion in static expression — real(1).

ss3 Assignment of two floating point variables, library
scope.

ssé Floating point addition.

ssb Floating point multiplication.

ss6 Floating point division.

ss7 Integer literal assignment, literal "1" to library
scope variable.

ss8 Type conversion from floating point literal to integer

ss8_mod Type conversion from floating point literal to integer

5s9 Integer addition.

ss10 Integer division.

ss1l Library scope integer assignment.

ss12 Integer to float type conversion.

ss13 Float to integer type conversion of scalar variable
(not a literal as in ss8).

ssl4 Test of power function using exp and log function.

ss15 Language feature test, (float) ** 2 which can be
treated as (float) * (float).

ss16 Language feature test, (float) ** 3 which can be
treated as (float) * (float) * (float).

ss17 Language feature test, assignment to one dimensional

array of real.

64

Problem Test Name I Problem Test Description

ss18 Language feature test, assignment to two dimensional
array of real.

ss19 Language feature test, assignment to three dimensional
array of real.

20 | Assignment of library scope floating point variable to
local variable.

ss21 Assign float to component of array of records.

5522 o Allocation overhead test. Enter a block containing a

statically bounded one dimensional array of float,
assigh to component of it, and access component to
ensure liveness.

ss23 Allocation overhead test. Enter a block containing a
statically bounded two dimensional array of float,
assign to component of it, and access component to
ensure liveness.

ss24 Allocation overhead test. Enter a block containing a
statically bounded three dimensional array of float,
assign to component of it, and access component to
ensure liveness.

ss25 Allocation overhead test. Enter a block containing a
dynamically bounded one dimensional array of float,
assigh to component of it, and access component to

y | ensure liveness. o

ss26 Language feature test, GOTO.

5527 ‘Test of SIN function in math library.

ss28 Test of COS function in math library.

ss29 Language feature test, floating point "abs".

ss30 Language feature test, integer "abs” .

ss31 Test of EXP function in math library.

ss32 Test of LOG function in math library.

ss33 Test of SQRT function in math library.

ss34 Test of ARCTAN function in math library.

65

Problem Test Name l Problem Test Description

ss35 Test of SGN function (on floating point variables) in
GLOBAL.

ss36 Language feature test, simple procedure with no
parameters; call to library scope procedure ~
body is null.

ss37 Language feature test, simple procedure with one IN

OUT floating point parameters, declared in external library
unit — body is null.

ss38 Language feature test, simple procedure with two IN

OUT floating point parameters, declared in external library
unit ~ body is null.

ss39 » Laﬁguage feature tegt,7sim'bié”pic;cﬂe”dd'r;\'/‘\/.ﬁH three IN
OUT floating point parameters, declared in external
library unit - body is null.

ss40 Language feature test, integer unary minus.

ss41 Optimization test for folding of static integer
expression, "1+4+1".

ss41_mod Optimization test for folding of static integer

expression, "1+1". Perform statement in an external
procedure to inhibit loop invariant optimization

ss42 | Optimization test for folding of static integer
expression, "-1".
ss42 mod Opti..azation test for folding of static integer

expression, “-1". Perform statement in an external
procedure to inhibit loop invariant optimization

ss43 Store zero, call procedure, increment integer.

ssd44 Optimization test for algebraic simplification " +0" is
redundant.

ss45 Assign external irnt'éger to zero.)

5546 o | Assign external integer to "large” literal.)

ss47 Optimization test for algebraic simplification, "*1".

ss48 Optimization test for algebraic simplification, " /1".

ss49 Optimization test for algebraic simplification, "*0".

66

Problem Test Name l Problem Test Description

ss50 Optimization test for algebraic simplification, " **0".

ssb1 Optimization test. Check for algebraic
simplification, " **1".

ss52 Test use of "INC” instruction for " +1".

ssb3 Reference to subscripted array of int, no checking.

ssb4 Reference to subscripted array of int, no checking

ss55 Reference array with a constant subscript .

ss56 Optimization test for dead assignment elimination on
integers.

ssb7 Test subscript computation using FOR loop index.

ss58 Test expression using FOR loop index.

ss59 Unary minus, floating point.

ss60 Assign negative floating literal to scalar.

ss61 Optimization test for algebraic simplification of
"*1.0".

5562 Optimization test for algebraic simplification of
"/ 1.0".

ss63 Optimization test for algebraic simplification of
"*0.0". A

ss64 “Optimization test for algebraic simplification of
"4+ 0.0".

ss65 Optimization test for algebraic simplification of
"(float) ** 0",

5s66 Optimization test for algebraic simplification of
"(float) ** 1".

ss67 Optimization test: algebraic simplification;
symbolic simplification of variable divided by itself.

ss68 Optimization test: dead assignment elimination;
floating point variable

ss69 Test that parentheses are respected. This is a folded
version ss70.

ss70 Test that parentheses are respected. This might be

improperly folded into ss69.

67

Problem Test NameJ Problem Test Description

ss71 Optimization test. Assign float variable to itself.
ss72 Language feature test; boolean operator NOT.
ss73 Optimization test: algebraic simplification;
boolean NOT NOT.
ss74 Optimization test: algebraic simplification;
boolean expressions "AND true” and "OR false”.
ss75 Optimization test for common subexpression
elimination; array element is referenced twice in same expression.
ss76 common subexpressmn ‘elimination o
9 references to 3D array index computation
with different literal terms
ss?7 array assignment, coding style
aggregate with range specification
ss78 array assignment, coding style
aggregate with all elements positionally specified
ss79 array assighment, coding style copy array
ss80 Coding style test. Array assignment using a FOR loop
to set each element of 10 component real array to 1.0
ss81 Coding style test. Array : assignment using a FOR loop
to set the "ith” element of a 10 component integer array to "i"
5582 if statement, integer relation (true)
ss83 if statement, integer relation -
similar to ss82, using "not(>=)" rather than " <"
ss84 if statement, integer relation (false), no ELSE clause
ss85 if statement, integer relation (true) with ELSE clause
5586 if statement integer relation (false), ELSE clause -
587 1 if sf statement mteger%arnd‘ﬂo_atmg» relation (true) S
5588 if statement, integer and floating relation (false)
connected with "AND"
ss89 if statement, integer and floating relation (false)
"AND THEN"
ss90 if statement, integer and floating relation (true)

"OR ELSE"” connection

68

Problem Test Name lProblem Test Description

ss91 if statement, IN operator with static bounds (‘range)

ss92 if statement, IN operator with dynamic bound

ss93 if with literal condition, "if false ..."

ss94 if statement, simple boolean variable as condition
(false), no ELSE clause

$s95 mod Make references to local scope variables and avoid

easy loop invariant optimization. The set of test

problems (ss95.mod, ss96_mod, ss97_mod, and ss98_mod)
all include the time to setup the environment, which
typically will be much larger than the time to make a
reference to a variable. However, with precise time
measurements, it will be possible to distinguish

between systems which use static-links and those which
use a display.

ss96 mod Reference to intermediate scope variable. One level up

ss97 mod Reference to intermediate scope variable. Two levels up

ss98 mod Reference to intermediate scope var. Three levels up.

ss99 String literal assignment .

ss100 Assign one component of an array of records to another

ss101 Standardize boolean. Assign relation on integers to
boolean variable.

ss102 Language feature test, MOD operator.

ss103 Language feature test, REM operator.

ss104 FOR loop, range null which is not determinable at
compile time. Test of FOR loop setup time.

ss105 FOR loop, containing procedure call.

ss106 FOR loop with null body, could be noop.

ss107 Convert one fixed point type with DELTA of 0.001 to
another fixed point type with DELTA of 0.01.

ss108 Convert one fixed point type with DELTA of 0.01 to
another fixed point type with DELTA of 0.001.

ss109 Fixed point multiplication.

69

Problem Test Name | Problem Test Description

ss110 Fixed point addition (no fixed point conversion
required).

ss111 String slice assignment (static bounds, 2 character
slice).

ss112 Dynamic string slice assignment .

ss113 Catenation operator.

ss114 Record assignment.

ss115 Record component by component assignment (all fields)

ss116 Record assignment, aggregate.

ss117 Raise range constraint, process exception.

ss118 Case statement, compact alternative range.

ss119 Case statement, sparse alternative range.

ss120 Coding style test: polynomial evaluation;
Coefficients in array for Horner's rule.

ss121 Coding style test: polynomial evaluation; Explicit
powers.

ss122 Coding style test: polynomial evaluation; Inline
Horner's rule.

ss123 Coding style test: polynomial evaluation;
Preconditioned.

ss124 Call local procedure with 3 default parameters,
omitting all parameters on call.

ss125 Call local procedure with 3 default parameters,
specify all parameters on call.

ss126 Call local procedure with 3 default parameters,
specify second parameters (by name) on call.

ss127 Lower level procedure that ss124-ss126 call on.

ss128 PRED and SUCC functions on enumeration types.

ss129 Same computations as in ss128 on integers .

ss130 Take 'POS attribute of enumeration literal.

ss131 Take attributes 'VAL, 'IMAGE, 'POS, 'VALUE of

enumeration type.

70

Problem Test Name j Problem Test Description

ss132 Comparison between enumeration variable and
enumeration literal.

ss133 Case with enumerated type (should be dense jump table)

ss134 Language feature test. Floating point put to string,
default exponent field (not 0).

ss135 Language feature test. Floating point Get from
string. Exponent field is not zero.

ss136 Language feature test. Floating point Put to string
exponent. Field is zero.

ss137 Language feature test. Integer Put to string.

ss138 access IN mode scalar parameter

ss139 assign to OUT mode scalar parameter

ss140 reference IN OUT mode scalar parameter 7

ss141 call on local function

ss142 call on local inline function

ss143 Call function where actual parameter contains another
function call.

ss144 example of textual substltutlon to compare to 55142

ss145 Reference to IN mode array parameter elements. Size
of input array is 100 elements.

ss146 Reference to IN mode array parameter elements. Size
of input array is 10 elements.

ss147 Reference to IN mode array parameter elements. Actual
parameter is dynamic slice which has bounds of 1 .. 1.

ss148 User-defined generic function.

ss149 inline generic procedure on strings

ss150 inline generic procedure on floating point scalar

ss151 provide example to compare with ss149

ss152 discriminant record assignment

ss153 discriminant record assignment, raising constraint_
error

ss154 access type reference, checking suppressed

ss155 store into allocated object, checking suppressed

71

Problem Test Name l Problem Test Description

ss156 field assighments to unpacked record

ss157 field assignment to packed record

ss158 record assignment implying reformatting :
unpacked-packed

ss159 record assignment implying reformatting :
unpacked-packed

ss160 record field assignment, record movement

ss161 record field assignment, record movement

ss162 allocate 100 linked entries from heap, then follow
links and deallocate. This may raise storage._error.
This test uses accesses to constrained objects.

s5163 allocate 100 linked entries from heap, then immediately
deallocate. An optimizing compiler can omit allocation
This shouldn't exhaust space.
This test uses accesses to constrained objects.

ss164 allocate 100 linked objects in collection and
immediately deallocate them.
This test uses accesses to constrained objects.
An optimizing compiler can omit allocation.

ss165 allocate 100 linked objects in collection and then
follow finks and deallocate. If this works once,
repetitive executions should not risk raising
storage error.
This test uses accesses to constrained objects.

ss166 allocate and follow links. No explicit deallocation

on. All space in a collection should be freed on
block exit. May raise storage_error.
This test uses accesses to constrained objects.

72

Problem Test Name

Problem Test Description

ss167

allocate 100 linked objects in collection and exit block
No explicit deallocation, since space in collection
should be freed on block exit. Specifies pragma
controlled. May raise storage error.

This test uses accesses to constrained objects.

An optimizing compiler can omit allocation.

ss168 1D array store with subscript range check

55169 fetch from 1D array with subscript range checking,
using constant subscript

ss170 Fetch from and store into 1D array (same index) on
both left and right side of assignment statement with
subscript range checking enabled. Subscript
computation need only be verified once.

ss171 subscript with FOR loop index (in range)
compile time range check possible

ss172 common subexpression elimination subscripts, 7
range checking enabled

ss173 constant term in addressing expression,
subscript range checking enabled

ss174 3 references to same array in expression, subscripting
expression has constant terms with subscript range
checking enabled. Bounds checks can be merged.

ss175 Reference to 4 arrays which overlapping static bounds
Can merge bounds checking.

ss176 Optimization test. Problem is amenable to boolean
variable elimination.

ss177 Optimization test. Problem has had boolean variable
elimination performed by hand.

ss178 Problem has tests which be merged.

ss179 Problem has test merged by hand. Compare with ss178.

ss180 Optimization test. Problem has two separate FOR loops

which can be fused.

73

Problem Test Naime [Problem Test Description

ss181 Problem has one loop fused by hand. Compare with ss180

ss182 Loop terminates with "EXIT WHEN ... ; END LOOP;”
Simple translation will have conditional branch to

exit loop followed by unconditional branch to head of
loop. Can be improved by jump tracing into one
conditional branch (with reverse condition).

ss183 Loop terminates with "IF ... WHEN EXIT; END IF;
END LOOP;” Simple translation will have conditional
branch to exit loop followed by unconditional branch
to head of loop. Can be improved by jump tracing into
one conditional branch (with reverse condition).

ss184 Loop starts "LOOP; EXIT WHEN ... ; ... END LOOP;"
Simple translation will have conditional branch to

exit loop and unconditional branch at end of loop to
the head of the loop. Can be improved by jump tracing
into one conditional branch (with reverse condition).

ss185 Control folding "WHILE false LOOP ..." can be
translated into a null.

ss186 IF statement with same statement in THEN and ELSE
clauses.

ss187 IF statement with null in both THEN and ELSE clauses
making test unnecessary.

55188 integer exponent, ¥*2

ss189 Could fold leading unary minus into a literal further
on in the expression. Compare with ss190.

55190 Hand folded version of ss189. -

ss191 integer, exponentiation with variable exponent,
(-1)**mm LRM Features : 244.1.1434544564.65.2

ss192 Same subscripting expression of left and right side of

assignment statement. Checking suppressed.

Problem Test Name | Problem Test Description

ss193 3 references to same array in expression, subscripting
expression has constant terms with subscript range
checking suppressed. Subscripting expression has
common subexpression.

ss194 Reference to 4 arrays. Compare with ss175. This
version suppresses subscript checking.

ss195 superfluous integer assignment

ss196 natural integer multiplication, * 2

ss197 natural divide multiplication, /2

ss198 natural integer multiplication, *4

ss199 natural integer mod, MOD 4 o

ss200 expression comparable to MOD 4

ss201 natural integer multiplication - not power of 2, *1009

55202 integer multiplicaton

55203 natural division, 1009

ss204 natural integer REM, REM 4

ss205 Subtract two integers and compare result to 0

55206 Directly compare two integers. Compare with ss205.

55207 Relational test, compare integer variable against 0

ss208 relational expression, integer / non-zero literal
comparison. For comparison with ss207.

ss209 WHILE loop comparable to the FOR loop in ss81

ss210 Expression with common term. Could be optimized.

ss211 Hand optimized common subexpression elimination, uses
temporary variable to store common expression.

ss212 example where invariant motion is possible

55213 example where strength reduction is possible

ss214 machine idiom, reuse of condition code setting. Tests
same relation in IF and ELSIF. The first tests for
" >" and the second for " <"

ss215 machine idiom, block move? Copy two consecutively

allocated fields from one instance of a record type
to another. Could be block move here.

75

Problem Test Name [Problem Test Description

ss216 example floating point, constant folding, constant
propagating

$s216_mod example floating point, constant folding, constant
propagatmg

$s217 _ example integer point constant folding, constant
propagatmg

ss218 ' check for invalid algebraic simplification, respect of
parenthesis

ss219 foldable real expression. Equivalent to ss216

$5219_mod foldable real expression. Equivalent to ss216

$5220 ' | algebraic simplification, floating point. Several
simplifiable subexpressions

ss221 algebraic simplification, integer. Several
simplifiable subexpressions.

§s222 Exponential term in an expression is loop invariant

ss223 relational expression example, OR

ss224 relational expression example "OR ELSE”. Same
relations as in ss223.

ss225 dead assignments within a loop, killed by assignment
after loop exit.

55226 dead assignments within a block. Variable assigned to

local which is not referenced before block is exited.

$s227 o ;example of foldable boolean expression, "OR false”

55228 example of boolean expression, integer relation OR
boolean varnable

$5229 example of boolean expression, integer relation OR
ELSE boolean variable. Same variables as in ss228

ss230 example of foldable boolean expression,
"OR false OR false”

ss231 example of foldable boolean expression
"OR ELSE false OR ELSE false”

55232 example of foldable boolean expression
"OR ELSE false”

76

Problem Test Name | Problem Test Description

ss233 example of type conversion, 2 integer to float
conversions

ss234 example of type conversion, integer to float

ss235 This exchanges two elements of a 1D floating point
array Same logic as ss150, which is a generic
instantiation of an exchange procedure for floating
point values.

ss236 example optimizable by application of loop induction

ss237 second example optimizable loop induction

ss238 simple example amenable to loop unrolling

55239 | example of FOR loop with null range, compile time |
determinable

ss240 simple example amenable to loop unrolling
**%* How is it different from ss2387

ss241 null type conversion, int() applied to int type
variable

ss242 reasonable complex function, composed of pieces
presented in ss243 - ss246

ss243 access to array of 2 character strings and assign to a
slice

ss244 assign to float field of record

55245 assignment to discriminant record

246 | attribute 'POS apphed to array ‘element

ss247 function which returns float value

55248 procedure with OUT mode float parameter

ss249 procedure equivalent to function Max1 in ss141
returns result IN OUT mode parameter

ss250 control flow folding "loop exit; end loop;”

ss251 ' | use VAL, POS, SUCC attributes on enumeration type
without representation clauses. This statement
enables range checking.

77

Problem Test Name LProblem Test Description

ss252 use VAL, POS, SUCC attributes on enumeration type
without representation clauses. This statement is

in a block with suppress RANGE_CHECK.

Revision : 11-07-88

ss253 use VAL, POS, SUCC attributes on enumeration type with
representation clause and enable range checking

55254 use VAL, POS, SUCC attributes on enumeration type with
representation clauses, suppressing range_checking

ss255 uses 'SUCC and 'PRED on enumerated type, enabling
range checking

55256 fetch from access type, pointer to float, enable
checking

ss257 store into access to float object, checking enabled

$s258 Pass IN OUT mode array formal parameter, compare with
$s259 which calls same procedure but requires type
conversion

ss259 Unchecked type conversion on IN OUT mode array formal

parameter. Converts an array of real with bounds
given by an enumeration type to array of real with
bounds given by literal range 1 .. 50.

$s260 local procedure call, body is null

ss261 GOTO next statement. A peephole optimizer should
translate this into a null statement.

$s262 example where good register usage would show up.

Floating point variable is used in several consecutive
IF statements.

$5263 example where good register usage would show up.
Variable used in 2 consecutive statements.
$s264 example where good register usage would show up.

Integer variable stored in one statement is referenced
in relational test and in statement in the THEN clause
of the statement.

78

Problem Test Name | Problem Test Description

ss265 example where good register usage would show up.

Integer variable stored in one statement is referenced

in the next statement.

55266 integer abs
ss267 | $5267-269 compare the use of a named number, a literal,

and an initialized variable to perform some

computation. This version uses named number.

55268 $s267-269 compare the use of a named number, a

literal, and an initialized variable to perform the

same computation. This version uses a literal number.

$s269 | $5267-269 compare the use of a named number, a literal

and an initialized variable to perform the same

computation. This version uses initialized variable.

ss270 bigint type assignment

ss271 bigint type addition
272 | bigint type subtraction
ss273 - bigint type multiplication S
ss274 | bigint type division -
ss275 bigint type MOD
‘ 55276 ‘ | bigint type REM V
| $s277 conversion from int to bigint
ss278 bigint type increment
55279 bigint type **2
ss280 bigint type relational comparison
55281 int multiplication
55282 conversion from bigint to real
55283 conversion from real to bigint
55284 fetch from array of bigint.
*** How is this different from ss2857
$5285 fetch from array of bigint, fold term into
address computation
55286 extended precision floating point assignment
ss287 extended precision floating point addition

79

Problem Test NameiProblem Test Description

ss288

extended precision floating point divide

ss289

convert double to real

ss290 convert real to double
ss291 extended precision floa. *_ point **2
$s292 extended precision floating point comparison
55293 extended precision floating point abs
ss294 extended precision floating point sin
ss295 extended precision floating point cos
$5296 ‘extended precision f|oatmg point exp ‘
$s297 “extended precision floatmg point LOG
$5298 extended precision iloating point sqrt
$s299 extended precision floating point arctan
ss300 convert int to double
ss301 extended precision floating point array assignment
55302 extended precision floating point literal assignment
ss303 convert integer literal to double
ss304 floating point exponentiation, **16
ss305 floating point exponentiation, **4)**4
ss306 floating point exponentiation, **2)**2)**2)**2
ss307 floating point exponentiation
xX: =yy*yyxx: =xxFxx;xx: =xxF g xx: =xx*xx;
ss308 compare with s5304-5s308, xx:= exp(16.0 * log(yy));
ss309 access array of an enumerated type
ss310 assign enumeration literal to variable of type
ss311 explicit raise of user-defined except|on process |t
ss312 define user-defined exceptlon do not ralse it o
ss313 does not define exception N
ss314 test for constant propagation R
precise floating point literal (9 digits) which can
be constant propagated into its following statements
and folded.
ss315 hand optimized (folded) version of ss314

80

Problem Test Naime | Problem Test Description

ss316 test for constant propagation

*** How is this different from ss3177
ss317 test for constant propagation

*** How is this different from ss3167
ss318 | use of literal expression in first and second

occurrences could be folded
$s319 | algebraic simplification, "OR false”
55320 | boolean algebraic simplification, "OR ELSE false”
$s321 | boolean algebraic simplification, "OR true”
55322 ' | boolean algebraic simplification, "OR ELSE true”
$s323 floating point compare against zero
ss324 floating point literal comparison against non-zero
$s325 CASE statement, statically determined
ss326 operations - small unpacked boolean array, =, AND, NOT
ss327 operations on small unpacked boolean array, =, AND
ss328 operations on small unpacked boolean array, /=, AND
ss329 operations on small unpacked boolean array, AND
ss330 operations on small unpacked boolean array, OR
ss331 operations on small unpacked boolean array, OR

uses a aggregate with range clause
ss332 operations on small unpacked boolean array, XOR
ss333 operations on small unpacked boolean array,

fetch from and store into array element
ss334 operations on small unpacked boolean array,

slice assignment
ss335 convert from packed to unpacked small boolean array
ss336 fetch element from small unpacked boolean array
ss337 operations on small packed boolean array, =, AND, NOT
ss338 operations on small packed boolean array, =, AND
ss339 operations on small packed boolean array, /=, AND
ss340 operations on small packed boolean array, AND
ss341 operations on small packed boolean array, OR

81

Problem Test Name [Problem Test Description

ss342 operations on small packed boolean array, OR
uses aggregate with range clause
55343 operations on small packed boolean array, XOR
ss344 operations on small packed boolean array,
fetch from and store into indexed element
ss345 operations on small packed boolean array, slice
assugnment
'ss346 conversion packed to unpacked “small booleén ar?a}ﬁwﬁﬁ
ss347 | fetch element from small packed boolean array -
ss348 | operations on large packed boolean array, =, AND, NOT
ss349 : operations on large packed boolean array, NOT, XOR,
AND, OR
55350 - convert unpacked to packed Iarge boolean array
ss351 ' ﬁ operatlons on Iarge unpacked boolean arra);,':_ AND
ss352 | operations-large unpacked boolean array, AND, OR, XOR
ss353 convert large packed boolean array to unpacked
ss354 exit from FOR loop with "EXIT WHEN"
ss355 exit from FOR loop with "IF ... THEN EXIT"
5s356 exit from FOR loop with "IF ... THEN GOTO"
ss357 exit from FOR loops nested two deep with "EXIT WHEN"
ss358 call function with default value, specify parameter.
Should not evaluate the default expression
which is a function.
$5359 call function with default value, omit parameter. -
Should evaluate the default expression.
55360 o ' call local procedure B -
ss361 call null procedure at non- -main nestmg level
ss362 static expression which must be stored into variable
with range constraints with checking enabled
ss363 range checking simplification possible
ss364 range checking, can omit lower limit test since
guaranteed by bounds of right hand side
$s365 pass IN OUT mode parameter with range constraint

82

Problem Test Name l Problem Test Description

ss366 assign literal to variable with range constraints
ss367 assign int vanable to int variable with range
constraints requiring full upper and lower range
checking
55368 example using propetties of built in function
to simplify range checking
58369 force dlvudef By zero and process exception
55370 call on function returmhg s'trl.fmg -
ss371 String slice assignment, lower bound dynamic, upper
bound static. Moves a 6 character slice.
ss372 Successive assignment of same variable to two
variables with the same range constraints. Can share range checks.
ss373 Assign to an int variable with range constraints.
Then assign that value to another variable of the same type.
Second assignment need not check constraints again.
ss374 Assign to an int variable with range constraints,
§s375 assign literal to range checked variable
$s376 example with simplifiable control flow
ss377 Loop with procedure call and an unconditional EXIT
followed by a statement. Need not generate any code
for the statement after the EXIT. Control flow can be
simplified.
ss378 call on procedure with IN OUT mode formal parameter
(type int)
ss379 make two procedure calls. The lowest level has an
exception handler which can (re) raise an exception
and propagate it to the next higher level. This
problem raises the exception.
ss380 make two procedure calls. The lowest level does not

have an exception handler and will simply propagate
the exception raised to the next higher level. This
problem raises the exception.

83

Problem Test Name | Problem Test Description

ss381

Block with exception handler which calls on a

procedure which raises the exception (the procedure it calls
on does not have a handler but simply raises the
exception.)

$s382

make two procedure calls. The lowest level has an
exception handler which can (re) raise an exception
and propagate it to the next higher level. This
problem does not raise the exception.

In this problem the exception is NOT raised.

ss383

55384__‘7 o
ss385

k ca|l on procedure whnch doesn’t propagate exception

make two procedure calls. The lowest level does not
have an exception handler and will simply propagate
exception raised to the next higher level. This
problem does not raise the exception.

test for loop rotation, WHILE loop. Best code would
move the condition test to end of loop and not contain
unconditional branch to head of loop.

s5385x

$s386

This is GOTO version which has "if ... then goto ..."
as end of loop. Should have only one branch. The
address from GOTO label should be merged into the
relation tests associated with if statement -
nonoptimizing compilers might test condition, jump
false to "end if’, then execute the GOTO, but this
is easy to fix with a peephole optimizer. It would be
disappointing if the loops constructed by a programmer
with "goto” statements are much faster than the
"built-in” LOOP constructions, and may encourage poor
coding style.

test for loop rotation. Loop with EXIT WHEN at the
beginning of loop. Best code would move the condition
test to the end of the loop and conditionally branch
back to the head of loop (and insert an initial branch
at the initial entry to the loop to go to the test)

84

Problem Test Name | Problem Test Description

ss387

FOR loop with reverse option

This performs the same computations as ss385, ss385x,
and ss386, using FOR loop index for counting rather
than a global integer variable. If this problem is

much faster than the others, the processing of global
variables and general arithmetic is suspect.

ss388

$s389

sequence of literal assignment statements to array
components. Same effect as ss77-ss80

Do superfluous parentheses produce code? Simple
assignment of float variable to another float variable
where expression has parentheses.

$s390

Do superfluous parentheses produce code? Add three
float variables without any parentheses,

ss391
$s392

55393

Do superfluous parentheses produce code? Add 3 float
variables, parentheses around first two.
Do superfluous parentheses produce code? Add 3 float
variables, parentheses around last two.

Do superfluous parentheses produce cérdé—?m/i;;g*ri one

integer to another with superfluous parentheses around
the expression.

ss394

Do superfluous parentheses produce code? Add 3
integer variables, no parentheses.

$5395

55396

58397

Do superfluous parentheses produce code? Add 3
integer variables, parentheses around first two.
Do superfluous parentheses produce code? Add 3
integer variables, parentheses around last two.
application function, first order lag filter

using floating point variables

ss398

application function, limited integrator
using floating point variables

5399

application function, symmetric deadzone
using floating point variables

85

Problem Test Name LProblem Test Description

ss400 application function, symmetric limiter
using floating point variables

ss401 application function, first order lag filter
using integers .

55402 | application function, fimited integrator
using integers

ss403 application function, symmetric deadzone,
using integers

ss404 application function, symmetric limiter using
integers using integers

ss405 nested for loop to access a 2D array

ss406 common subexpression requiring flow analysis

ss407 value loaded in one statement is used in next

ss408 variable and literal are both referenced twice in the
same expression

ss409 loop induction example, subscripting with FOR loop
index

ss410 search for minimum of array with local function

ss411 search for minimum of array with inline function

ss412 integer variable referenced in one statement is
also referenced in next

ss413 order of evaluation test, expression has function call
followed by literal term

ss414 | order of evaluation test, expression has literal
followed by add of a function call. A simple
left-to-right order of evaluation would load the
literal, save value when it calls on the function,
and restore it after the function call.

ss415 | order of evaluation test, simple left-to-right order

of evaluation will load variable and then have to do a
register to register operation to add right hand
subexpression. Compare with ss416.

86

Problem Test Name | Problem Test Description

ss416 order of evaluation test, simple left-to-right order

of evaluation of subexpression is almost best here (perform
the divide and then add from memory - no need to save
and restore the quotient- however, the multiply by

0.5 should be deferred).

ss417 | coding style check. assign to variable and depending
on results of IF, reassign to it

ss418 coding style check. Depending on IF, assign a value to
a varniable.

ss419 Pass a scalar parameter which is an element of a
dynamically sized array

ss420 Pass a scalar parameter which is an element of a
statically sized array

ss421 algebraic simplification, foldable boolean "AND false”

ss422 Strength reduction, by hand, of ss213. Reduces an
exponential by FOR loop index " (-1)**"

55423 strength reduction test. Has multiply by FOR loop index

ss424 strength reduction test. Hand reduced form of ss423,
with multiply by FOR loop index reduced to add.

ss425 strength reduction test. Multiply by induction
variable which is not a FOR loop index.

55426 strength reduction test. Hand reduced form of ss425

with multiply reduced into add. Induction variable
is not a FOR loop index.

ss427 data flow. Assign integer to another integer and test
if two variables are equal.

ss428 common subscripting expressions, including
several indexing expressing across basic block.

55429 Is constant static array promoted to outer level?
uses local constant static array. Compare with ss430

ss430 Is constant static array promoted to outer level?

This uses non-local constant array

87

Problem Test Name J Problem Test Description

ss431 1/O formatting speed and accuracy. Convert powers of
two from 2.0**(-75) to 2.0**(+75) to string variable
with PUT and then GET them and compare with original.
Remember maximum error and output it after the test.
The number of replacements (when a new maximum error
is discovered) will vary between systems. However,
problem time will be determined mainly by conversion
time, and should still be comparable between systems.

ss432 test of algebraic simplification, can be factored

ss433 test algebraic simplification. Factored form of ss432

ss434 test algebraic simplification. Expression with 3
operators. Compare with ss435

ss435 test algebraic simplification. Splits the expression
of ss434 into three separate statements with
assignments to temporaries.

ss436 | test ‘aI'greB'rEaic“é;}hbiifi—céiiéﬁfvgeauence of divisions

ss437 test algebraic simplification. Combine sequence of
divisions into multiplications and one division.

ss438 | test swapping. FOR loop with embedded IF statement
with loop invariant expressions in relation and in the
conditional statements. "IF" can be moved out of FOR
loop as done by hand in ss439.

ss439 test swapping. Hand optimized version of ss438.

ss440 test of test merging. Several IF's can be merged.

ssd441 This version has merged tests, compare with ss440

ssd442 register allocation - with call on external procedure,
compiler cannot allocate "xx” to register within FOR
loop.

ss443 register allocation - no call on "die" so)

xx can be allocated to register

88

Problem Test Name LProblem Test Description

ss444

evaluate effect of selectively suppressing
combinations of division_check, overflow_check.
This problem enables division_check, overflow_check
on floating point division.

55445

ss446

evaluate effect of selectively suppressing
combinations of division check, overflow check

This problem enables division_check, overflow_check
on int division.
evaluate effect of ;éfééiiVely sJE;;r;ssing
combinations of division check, overflow check.
This problem enables division check, overflow check
on int MOD.

ss447

evaluate effect of selectively suppressing
combinations of division_check, overflow.check.
This problem enables division check, overflow_check
on int REM.

$s448

ss449

ss450

evaluate effect of selectively suppressing
combinations of division_check, overflow_check.

This problem suppresses, enables overflow_check on
floating point division.

evaluate effect of selectively suppressing o
combinations of division_check, overflow check.

This problem suppresses division_check, enables
overflow check on int division.
evaluate effect of selectively suppressing
combinations of division_check, overflow_check.
This problem enables division check, suppresses
overflow_check on floating point division.

ss451

evaluate effect of selectively suppressing
combinations of division_check, overflow._check.
This problem enables division_check, suppresses
overfiow check on int division.

55452

language feature test, access the function "clock”

89

Problem Test Name | Problem Test Description

55453

language feature test. Call function caiendar.seconds

ss454

language feature test. Call real(seconds(clock))

ss455

language feature test. DELAY 0.0

It is permissible for a compilation system to optimize
"DELAY 0.0;" into a NULL statemert. However, the
Ada Uniformity Rapporteur Group (URG) has recommended
that implemeutations consider DELAY 0.0 as a
scheduling point. At such a point, an implementation
would check whether another task has made it abnormal
(i.e. aborted it) and if so would terminate itself. In
general it is desirable that all test problems execute

as quickly as possible. In this example, the fastest
execution time (zero) is not necessarily desirable.

On all systems which do not translate this into a NULL
the execution time should be as fast as possible.

ss456

language feature test, convert floating point variable
to fixed point type DURATION

ss457

ss458

language feature test, convert integer to fixed point
type duration
language feature test. Delay 1 millisecond (long
enough to actually pause processor). All systems should take
1 millisecond for this statement, plus perhaps some
additional scheduling delay, and perhaps some

quantization when 1 millisecond is not a model number

of type DURATION. This test problem does not follow

the general ACEC modeling assumption that execution

time will be proportional to a systems factor because

all systems should execute for at least the requested

delay. This problem is reported with an error code as

that MEDIAN will not process statements which do not
follow the modeling assumption.

ss459

language feature test. Delay by negative expression

ss460

fixed point arithmetic expression, division by literal

90

Problem Test Name | Problem Test Description

ss461 fixed point arithmetic, division by variable

ss462 fixed point arithmetic expression, addition

ss463 fixed point arithmetic assignment

ss464 fixed point arithmetic relational test

ss465 fixed point arithmetic expression, subtract literal

ss466 V ‘converswf;—f&ed‘p—oiﬁt— to int

ss467 ‘conversion, fixed point to ﬂoatmg point

5468 ‘conversion, int to fixed point

ss469 reference variable defined in two packages
to explore overheads to maintain addressability

ss470 reference variable defined in 1 external packages
to explore overheads to maintain addressability

ss471 reference variable defined in local scope plus 3
external packages to explore overheads to maintain
addressability.

ss472 reference variable defined in three different packages
to explore overheads to maintain addressability

ss473 ‘reference variable defined in four different packages
to explore overheads to maintain addressability.

ss474 reference variable defined in three different packages
to explore overheads to maintain addressabilfity.
Multiple references to packages so might share
addressing setup.

ss475 | reference variable defined in two different packages
to explore overheads to maintain addressability.
Reference one package twice.

ss476 reference variable defined in two different packages
to explore overheads to maintain addressability.

ss477 reference variable defined in one external package
to explore overheads to maintain addressability

ss478 test calling a formal generic procedure. The actual

procedure is procQ; an external procedure with a
null body.

91

Problem Test Naime | Problem Test Description

ss479

test of coding style variations. Test ‘A’ through 'Z’
for being vowels using a boolean array of character

ss480

test of coding style variations. Test 'A’ through 'Z’
for being vowels using a local function for
is a vowel.

test of coding style variations. Test 'A’ through 'Z’
for being vowels using an IF with "OR"s.

test of coding style variations. Test 'A’ through 'Z’
for being vowels using a case statement on characters.

test of coding style variations. Function which
accesses a locally declared named number

test of coding style variations. Function which
accesses a outer level named number

test of coding style variations. Function which

accesses a literal.

test of coding style variations. Set Boolean if -
character is a vowel using array of Boolean indexed by
characters; array has value TRUE for vowels, FALSE
for non-vowels.

test of coding style variations. Set Boolean if
character is a vowel using local function.

test of coding style variations. Set Boolean if
character is vowel using case statement on characters.

test of coding style variations. Set Boolean if
character is a vowel using IF and sequence of OR tests

test of coding style variations. This is NESTED IF
version of same condition tested in ss491 using

AND THEN.

test of coding style variations. Thisis AND THEN
version of same condition tested in ss490 using

nested IFs.

$s492

test of coding style variations. Set Boolean if
character is a vowel using external function.

92

Problem Test Naine | Problem Test Description

ss493

test of coding style variations. Test 'A’ through 'Z’
for being vowels using an external function.

ss494

test of coding style variations. Simple related to
compare with ss495 which will use NOT and inverse
relation test.

ss495

test of coding style variations. Simple relation to
compare with ss494. This has NOT and inverse relation
test.

ss496

ss497
ss498

test of coding style variations. Can be simplified
into ss497 by DeMorgan’s rule and eliminate an
explicit NOT operator.

Coalng stYlé variations. Svmplufled form of s ss496
test of coding style variations. Set a boolean to
reflect a relation by "if relation then boolean :=
true ..." Contract with ss499 which does direct
assignment of relation into boolean.

ss501

5502

a relation.

test of coding style variations. Set a boolean to

language feature test, unchecked conversion between

int and packed array(1..int'size) of Boolean, AND

operator on packed Boolean arrays. It should be

fairly portable.

boolean, boolean to integer, AND operator.

language feature test, unchecked conversion and
boolean operators. Overloaded AND onto integers.
Language feature test, unchecked conversions between

int and packed array(1..int'size) of Boolean,

overloaded AND operator on INT.

language feature test, unchecked conversion between o
INT and BOOLARRAY, AND (overloaded on INT as packed
Boolean operator), OR (overloaded on INT as packed
Boolean operator).

ss503

idioms. Increment and decrement same integer scalar.

93

Problem Test Name LProblem Test Description

ss504 data flow into noop. Relation test if a variable is
not equal to itself.
ss505 data flow into noop. Relation where value of variable

is referenced in two subexpressions which are mutually
exclusive. No value could satisfy both expressions.

ss506 language feature test, unchecked conversion between
INT and BOOLARRAY, AND Boolean array operator.
ss507 machine idioms, test of register reuse. Increment
an integer variable, test it in next statement.
ss508 common subexpression shared between the relational

test in an IF statement and an arithmetic expression
in the THEN clause of the statement.

55509 ' B common subexpression shared between an arithmetic
statement and the relational test in an IF statement
that follows it.

ss510 register reuse, test Boolean variable in one
statement, next statement is an IF with a relation
test using the Boolean variable.

ss511 | register allocation. Problem finds the array index
of the minimum valued element. This version uses

a temporary scalar variable to remember the minimum
rather than reference an array element on each FOR
loop iteration.

ss512 register allocation. Problem finds the array index
of the minimum valued element. This version does
not use a temporary scalar variable to remember the
minimum but references the array element which has
the current minimum on each FOR loop iteration.

ss513 coding style variation, record definition with a
default initialization to a float point literal value.
ss614 coding style variation, record definition with a

default initialization to a float point scalar variable.

94

Problem Test Naime | Problem Test Description

ssb15 coding style variation, record definition with a

default initialization, which has an explicit initialization
to a floating point literal to override the default.

Here the default value is also a literal.

ss516 Coding style variation. For loop index references
value of array from prior iteration. Compare with ss517 which
saves value from last iteration in temporary scalar.

ss517 Coding style variation. Uses temporary scalar to

refer to value of prior iteration. Contrast to ss516
'ss518 | Sums all elements i ina floatmg point array. .
ss519 | Problem finds the array ‘index of the maximum valued

element. This version uses a temporary scalar
variable to remember the minimum rather than
reference an array element on each FOR loop
iteration. Array is setup in ascending order so each
new element is larger than the prior one.

ss520 | Problem finds the array index of the maximum valued
element. This version doesn’t use a scalar variable

to remember the maximum but references the array
with index of current maximum element on each FOR
loop iteration. Array is setup in ascending order so

each new element is larger than the prior one.

ss521 call on simple local procedure, no dynamically sized
objects, no exceptions, no calls on subprograms.
55522 Call on simple procedure, similar to that used in

ss521, but containing a call on another procedure
(which is not executed)

55523 [Call on a (potentially) recursive procedure. Actual
control flow is the same as ss521 and ss522. These
three problems test for presence of different
subprogram linkages for "simple” subprograms.

Problem Test Name | Problem Test Description

ssb24 coding style variation. Shift a packed Boolean array
using slice assignments. Contrast with ss525 which
uses a FOR loop and element by element assignment.
Could be implemented as integer divide.

ss525 coding style variation. Shift a packed Boolean array
using a FOR loop and element by element assignment.
Compare with time for ss524 which uses slice
assugnment to perform the same actions.

ss526 | referto element of Boolean array | with literal subscript.

65527 conditional raise of user defined e exception and go

through handler. Taken. Contract with ss528 where it is not.
Explicit RAISE could be implemented by simple branch.

ss528 conditional raise of user defined exception and go
through handler. Not taken. Compare with ss527,
where exception is raised.

55529 constant propagating with local variable not
visible in any handler
ss§§6”" I és-evgl\‘l“lth |oca| vanable not visible in handler o
531 | store suppresscon of local ‘variable visible in handler
ss532 | constant propagating : local variable visible in handler
ss533 cse with local variable visible in handler
ss534 store suppression of local variable visible in handler
ss535 sample to embed in code for ss536
ss536 test for loop invariant motion
ss537 named number literal expression is evaluated. Problem

tests if expression is evaluated using working precision
or rational package.

ss538 - | Constant real using literal expression is evaluated.
Problem tests if expression is evaluated using working
precision or rational package. Context is one where
the LRM does not require static expression, and
working precision is permissible.

96

Problem Test Name l Problem Test Description

ssh39

Literal expression in relational test is evaluated.
Problem tests if expression is evaluated using working
precision or rational package. Context is one where
the LRM does not require static expression, and
working precision is permissible.

ss540

ss541

Literal floating point expression in assignment

statement. LRM does not require evaluation with rational package.
Problem also tests precision of evaluation.

unrolling, test elimination. This has variable upper

bound. Could be partially unrolled.

ssh4?2

unrolling, test elimination. This is version of ss541
with literal upper bound. Could be unrolled.

§s542x

55543

5544
55545

ss546

which is unreachable and superfluous.

Partially unrolled version of ss542 for comparison
Eliminates tests for FOR loop index variable=1 within
the loop.

Declare block with null body and exception handler,
null body check for block overhead o
example where non left to right order of evaluation
of one arithmetic expression can enhance performance.
Call on two parameter function, “with left actual
parameter a literal and right a further function call.
Nested 8 levels. Integer function (max). A strict

left to right order of evaluation will result in
unnecessary storing and reloading of literal values.
Contract with ss547.

ss547

€548
ss549

Analogous to ss546 with calls nested on first parameter.
A left to right order of evaluation is best here. Good
compiler will do both ss546 and ss547 is about the same
time.

Floating point version of ss546. Compare with ss549
Floating point version of ss547. Compare with ss548.

97

Problem Test Name l Problem Test Description

ss550 Integer addition with parameters nested on second
operand. A left-to-right order of evaluation may
generate necessary stores and reloads. Contrast
with ss551.

ss551 Integer addition with parameters nested on first
operand. A left-to-right order of evaluation is best.
Contrast with ss550.

ssb52 example where order of evaluation can enhance
expression is complex and many targets will run out of
registers in evaluating it, provoking register spill

ssb53 idioms - common subexpression elimination on subscript
on left and right side of an assignment.

ssb54 common subexpression elimination for subscripts

ss555 idioms, register reuse. Use INC instruction if available

$s556 Integer constant propagation. Assign zero to a variable,
increment variable in next statement.

ss557 register usage. Variable used in indexing expression on
left side of assignment statement is also used on right.

ss558 data flow analysis based on values of relations in a

conditional statement can fix values of variables in
the conditional parts - if they didn’t have values
which satisfy conditions, code would not execute the
alternative, therefore optimized can simplify
expressions by using bounds determined by relations.

ss569 . comparison for ss558

ss560 algebraic simplification - "-1*"

ssb61 comparison to ss560 without explicit multiply
5s561x data flow analysis based on values of relations in a

conditional statement can fix values of variables in
the conditional parts - if they didn’t have values
which satisfy conditions, code would not execute the
alternative, therefore optimized can simplify
expressions by using bounds determined by relations.

98

Problem Test Naime [Problem Test Description

55588

ss562 language feature test, actual parameter for in out mode
scalar includes an expression with function call.
Exposed error in implementation in one system which
called the function both before and after evaluation.

ss563 inline function with literals, can be folded into
assignment of literal value to integer

ss564 inline function test, first actual parameter to max
function is 0, permitting simplification.

ss565 inline function test, second actual parameter to max
function is 0, permitting simplification.

ss566 " | reference to first formal integer ‘parameter

ssb67 reference to second formal integer parameter

ss568 reference to third formal integer parameter

ss569 reference to fourth formal integer parameter

ss570 reference to fifth formal integer parameter

ss571 reference to sixth formal integer parameter

ss572 reference to seventh formal integer parameter

ss573 reference to eighth formal integer parameter

ssb74 reference to ninth formal integer parameter

ssb75 reference to first formal float parameter

ss576 ~ | reference to second formal float pia?al;'let_ejrﬂ -

ss577 ~ | reference to third float parameter S

ss578 - 'reference to fourth first formal floavtﬂ;;a‘rameter o

ss579 reference to fifth formal float parameter N _

ss580 reference to sixth formal float parameter

ss581 reference to seventh formal float parameter

ss582 reference to eighth formal flcat parameter

ss583 reference to ninth formal float parameter

ssb84 call procedure with 9 integer parameters

ssb85 call procedure with 9 float parameters

ss586 math library test, arcsin

ss587 expression - foldable subexpression using named number
expresswn fo|dab|e subexpressuon usmg constant real

99

Problem Test Namel Problem Test Description

ss589 expression with foldable subexpression using
variable initialized with literal and not modified

ss590 expression with foldable subexpression using variable
initialized with expression and not modified

ss591 comparison with ss587-500, using variable which is
modified, but is invariant within the timing loop

5592 comparison with ss587-591, expression not timing loop

invariant

ss593 comparison with ss587-592, variable is global, not
invariant

ss594 comparison with ss587 - 593, hand folded version

ss595 expression with foldable subexpression using literals

ss596 call on function returning unconstrained object

ss597 comparison to ss596, omits call on function returning
unconstrained object.

ss598 assign to fields of discriminant records, no constraint
error will be raised.

ss599 compare with ss598, sequence of assignments to types not
in discriminant record

ss600 | assign to one field in discriminant records, no .
constraint error will be raised but will be checked

ss601 ' | assign to variable of same type as field in record,
no discriminant checking will be needed. Compare with
ss600.

55602 Assign to field of discriminant records, raise
constraint error

ss603 assign whole variant

ss604 reference field in discriminant record, see if system
retests discriminant.

$s605 reference field in discriminant record, see if system
retests discriminant.

100

Problem Test NameiProblem Test Description

ss606 Assign literal floating point to scalar in one
statement, in next statement assign that scalar to another scalar
variable. Could suppress load in second statement.

55607 Assign literal floating point to scalar in one
statement, in next statement assign that scalar to another scalar
variable. Could suppress load in second statement.

Value is 0.0, so might be able to use some machine idiom
to further speed processing.

ss608 Integer version of ss606.

5609 assign expression to scalar variable in first statement,
then assign this variable to another in second
statement. Could suppress load in second statement.

ss610 Integer version of ss609.

ss611 Integer version of ss607
or idioms

ss612 Loop which frequently references a variable which might
be allocated to a register, or at least loads suppressed

ss613 language feature test, pass parameter to unconstrained
formal parameter. With checking enabled. Compare with
ss616

ss614 language feature test, pass parameter to unconstrained
formal parameter. With checking enabled.

ss615 language feature test, pass parameter to unconstrained
formal parameter. With checking enabled.

ss616 language feature test, pass parameter to unconstrained
formal parameter. Suppress checking.

ss617 language feature test, pass parameter to unconstrained
formal parameter. Suppress checking.

ss618 language feature test, pass parameter to unconstrained
formal parameter. Suppress checking.

$s619 6 " GOTO" statements which jump to another "GOTO”

statement. Statements are not in order. Test for jump
tracing optimization.

101

Problem Test Name l Problem Test Description

$s620 6 "GOTO" statements which branch to next statement.
This is a simpler test for jump tracing that ss619.
A peephole optimizer which omits a branch to the next
instruction would suffice to optimize this problem.

ss621 language feature test, generic non-inline function,
instantiated in external umit

ss622 language feature test, generic inline function,
instantiated in external unit

55623 language feature test, generic non-inline function,
instantiated in same unit

ss624 ‘ language feature test, generic inline function,
instantiated in same unit

55625 language feature test, local generic inline function,

ss626 language feature test, -
local generic non-inline function,

ss627 language feature test comparison,
non-generic non-inline function,

ss628 language feature test, generic non-inline function,
instantiated in external unit

$s629 language feature test, generic inline function,
instantiated in external unit

ss630 language feature test, generic non-inline function,
instantiated in same unit

ss631 language feature test, generic inline function,
instantiated in same unit

ss632 language feature test comparison,
non-generic non-inline function,

ss633 language feature test comparison,
inline in external package

ss634 sequence of simple assignments. Check for prefetching
base addressing overheads, consistency of measurements

ss635 sequence of simple assignments. Check for prefetching
base addressing overheads, consistency of measurements

102

Problem Test Name l Problem Test Description

ss636 sequence of simple assignments. Check for prefetching
base addressing overheads, consistency of measurements.

ss637 sequence of simple assignments. Check for prefetching
base addressing overheads, consistency of measurements
This version has right sides equal to previous
statements left sides. Could suppress reload.

ss638 comparison to ss639-check for dead variable elimination.

ss639 dead variable elimination. State never referenced.

ss640 comparison for dead variable elimination. ii global

ss641 comparison for dead variable elimination. No assignments

ss642 Sequence of procedure calls. Timing consistency check.

ss643 floating point cse requiring canonical ordering to detect

5564 3x math library test (float)**(float)

ss644 boolean cse, some canonical ordering applicable tests
relation "ll=mm” 5 times, then tests "mm=li" 5 times

ss645 language feature test, fetch from 1D array

ss646 language feature test, fetch from 2D array

ss647 language feature test, fetch from 3D array

$s648 language feature test, deallocation of null pointer
should be "null”

55649 Follow "if" statement, both legs of which assign to a
variable with an assignment to same variable which is
independent of the conditional assignments. This makes
the assignments within the "if" dead, and the whole
"if’ statement becomes unnecessary.

55650 Precede "if* statement, both legs of which assign to a
variable with an assignment to same variable which is
independent of the conditional assignments. This makes
the assignment before the "if" dead.

ss651 Assign to variable within a loop, assignment to be after
loop exit, making all assignments within the loop dead.

$s652 Test for packed component spanning a storage unit

boundary

103

Problem Test Name] Problem Test Description

ss653 Test for when unit doesn’t cross unit boundary

ss654 Test for both spanning and nonspanning accesses

ss655 This tests packing and unpacking

ss656 Simple assignment

ss657 Test for packed component spanning a storage unit
boundary

ss658 Test for when unit doesn’t cross unit boundary

ss659 Test for both spanning and nonspanning accesses

ss660 This tests packing and unpacking

ss661 Simple assignment

55662 Test for packed component spanning a storage unit
boundary

ss663 Test for when unit doesn’t cross unit boundary

ss664 Test for both spanning and nonspanning accesses

5s665 This tests packing and unpacking

ss666 Slmple assignment)

55667 | Test for packed component spanm'r;gié‘ storage unit
boundary

ss668 Test for when unit doesn’t cross unit boundary

ss669 Test for both spanning and nonspanning accesses

55670 This tests packing and unpacking

ss671 Slmple assignment

ss672 Test for packed component spanning a storage unit
boundary

5673 Test for when unit doesn’t cross unit boundary

ss674 Test for both spanning and nonspanning accesses 7

$s675 This tests packing and unpacking

ss676 Simple assignment

ss677 Test for packed component spanning a storage unit
boundary

55678 Test for when unit doesn’t cross unit boundary

ss679 Test for both spanning and nonspanning accesses

55680

This tests packing and unpacking

104

Problem Test Name l Problem Test Description

ss681 Simple assignment

ss682 Test left justified boolean field

ss683 Test the boolean field next to the left justified field

ss684 Test the boolean field next to the right justified field

$s685 Test right justified boolean field

ss686x Bit manipulation using array indexing. Doing ‘same
computations and ss686y.

ss686y Bit manipulation using array wide logical operators

ss687 Test for packed component spanning a storage unit
boundary

ss688 Test for when unit doesn’t cross unit boundary

ss689 Test for both spanning and nonspanning accesses

ss690 This tests packing and unpacking

ss691 Simple assignment

$s692 Test for packed component spanning a storage unit
boundary

$s693 Test for when unit doesn't cross unit boundary

ss694 Test for both spanning and nonspanning accesses

$s695 This tests packing and unpacking

35696 Slmple a55|gnment S

$s697 Test for packed component spanr.ng a storage unit
boundary

$s698 Test for when unit doesn’t cross unit boundary

$s699 Test for both spanning and nonspanning accesses

ss700 This tests packmg and Vﬁn;_)aickmg

ss701 S|mple aSS|gnment

ss702 Test for packed component spanmng a storage unit
boundary

ss703 Test for when unit doesn’t cross unit boundary

ss704 Test for both spanning and nonspanning accesses

ss705 This tests packing and unpacking

ss706 Simple assignment

105

Problem Test Name LProblem Test Description

ss707 Test for packed component spanning a storage unit
boundary

ss708 Test for when unit doesn’t cross unit boundary

ss709 Test for both spanning and nonspanning accesses

ss710 This tests packing and unpacking

ss711 Simple assignment

ss712 Test for packed component spanning a storage unit
boundary

ss713 Test for when unit doesn’t cross unit boundary

ss714 Test for both spanning and nonspanning accesses

ss715 This tests packing and unpacking

ss716 Simple assignment

ss717 Test left justified boolean field, record has
a representation clause

ss718 Test the boolean field next to the left justified field,
record has a representatici clause

ss719 Test the boolean field next to the right justified
field, record has a representation clause

55720 Test right justified boolean field, record has
a representation clause

ss721 Test fixed point assignment with no conversion
Dummy version of ss721 which will generate an error
message to be processed by FORMAT. Helps automate
the test suite.

$s722 Test simple fixed point conversion
Dummy version of ss722 which will generate an error
message to be processed by FORMAT. Helps automate
the test suite.

ss723 Test the fixed point conversion from base 10 to base 2

Revised : 11-07-88 to reflect SPR#16

Dummy version of ss723 which will generate an error
message to be processed by FORMAT. Helps automate
the test suite.

106

Problem Test NameiProblem Test Description

ss724 mod Test field not on storage unit boundary

ss725 mod Test field on storage unit boundary

$s726_mod Test creation of user-defined named number. User-defined
named numbers should be treated as literals as SS729_.MOD

ss727 mod Test access to system-defined name numbers.
Access to system defined named numbers should be
treated as literals as in $5729.MOD.

$s728_mod Test access of user-defined name numbers. -
User-defined named number should be treated as literals
as in 55729 MOD.

ss729 mod Test access of literal expression.
Literal usage should be folded.

ss* 30_mod Test ADDRESS attribute of a subroutine.

ss731_mod Test ADDRESS attribute of a package object.
Revision : 11-07-88

ss732_mod Test ADDRESS attribute of a dynamic object.

ss734_mod Test SIZE attribute of a statically allocated object.

ss735_mod Test SIZE attribute of a dynamically allocated object.

ss736_mod Test POSITION attribute for a record component.

ss737 mod Test FIRST BIT attribute for a record component.

ss738 mod Test LAST BIT attribute for a record component.

$s739 mod Test STORAGE TYPE attribute for an access type.

ss740 mod Test STORAGE TYPE attribute for a task type.

107

Problem Test Name | Problem Test Description

ss741 TEST FOR STORAGE RECLAMATION IN COLLECTION ACCESSED
WITH UNCONSTRAINED TYPES. Allocate 52 small objects,
filling up about 17% of the collection. Then deallocate
them, and do it again, deallocating in reverse order.
Then allocate 20 large objects filling up the same
fraction of the collection. Then deallocate these

objects. Repeat all the above 2¥rep_count times. If the
deallocated space is not reused, later allocations will

fail. The collection contains space for approximately
rep_count times 1000 "int” variable. Because of

possible space overhead for allocated objects, the
number of actual entries the collection can contain is
permitted by the LRM to vary between implementations.
This test problem allows a "fudge factor” of 3. For a
tight system, rep.count could be 1, which would fill up
collection to a bit over 50% each time, and executing
the allocation of large objects would check that the
space for small ones had been reused. However, for many
heap management algorithms, this would provoke failure,
so the problem does not try to pack the collection as
tight as might be possible. In any case, the problem

will fail, raising STORAGE_ERROR, when deallocated
storage is not reused.

ss744 Test using a single shared scalar variable

ss745 Test using a pair of shared scalar variables

ss746 Test using shared access variables

ss747 o Test interface to null éséembiy iar{g-tlvé‘gé routine.

Interface to assembler is a Chapter 13 feature not
required to be supported on all implementations.

ss748 Access component selected by function call on the left
side of assignment statement.

108

Problem Test Name l Problem Test Description

ss749 Optimization test for invariant loop code motion. This
example contains an invariant expression in an inner
loop. For the sake of comparison, see tests ss750 and
$5222.

ss750 Test for loop interchange optimization.

ss751 Optimization test: omission of an unreachable assignment

'ss752 | Optimization test: invariant motion; integer

assignment statement.

ss753 Assign out of range static expression to an integer with
range constraints. See if it optimizes into a simple
raise of CONSTRAINT_ERROR.

ss754 Explicit IF statement which tests static expression out
of range and raises CONSTRAINT_ERROR.

ss755 Assugn out- of-range static expression to a variable
with range constraints. Null handler.

ss756 : Range checkmg would be verlfued at complle time

ss757 Assign out of range dynamlc expression. Compare with
ss753 through ss756. This needs explicit checking.

ss758 Fetch value from one dimensional array.
No constraint checking.

ss759 Fetch value from two dimensional flcating point array.
No constraint checking.

ss760 Fetch value from three dimensional floating point array.
No constraint checking.

ss761 | Fetch value from one dimensional array.
Constraint checking.

ss762 Fetch value from two dimensional floating point array.
Constraint checking.

ss763 Fetch value from three dimensional floating point array.
Constraint checking.

ss764 Bit manipulation using array aggregate. Set a component

of packed boolean array to TRUE by using an OR against a

variable.

109

Problem Test Naine

Problem Test Description

ss765

Bit manipulation using array aggregate. Set a component
of packed boolean array to TRUE by using an OR using an
aggregate.
Bit mannfnﬁﬂtﬁusmgn indexing. Set element of packed
boolean array to true, selected by literal subscript.
Similar to ss765.

ss767 Bit manipulation using indexing. Set dynamically
computed element of packed boolean array to true.
Similar to ss765.

ss768 ‘ Bit manipulation using indexing. Set dynamically
determined element of packed boolean array to true,
using array of bits and OR operator. Similar to ss767.

ss769 Consistency check. same problem as ss36, ss770-773

ss770 Consistency check. same problem as ss36,ss769,ss771-773

ss771 Consistency check. This is same problem as ss36,
ss769-770, ss772-ss773

ss772 Consistency check. This is same problem as ss36,
8s769-771, ss773

ss773 Consistency check. same problem as ss36, ss769 - ss772

ss774 declare and reference array, setup by copying from
another array declared at higher level. Compare this
with other ways of setting up an initialized array.

ss775 declare and reference static array, setup with static .
aggregate. Optimizing compiler could simply make array
references directly refer to the static aggregate and
not do a copy.

ss776 declare and reference array, setup by executing code in
a loop in body of the block.

ss777 reference array setup in higher level. No initialization
code need be done here.

ss778 declare and reference array, setup by aggregate with

"others” clause

110

Problem Test Naime I Problem Test Description

—

!

ss779 Reference the Oth real variable declared in a package.

Early vanables may be able to use short displacements.
ss780 Reference the 2nd real variable declared in a package.

Early variables may be able to use short displacements.
ss781 Reference the 8th real variable declared in a package.

Early variables may be able to use short displacements.
ss782 Reference the 16th real variable declared in a package.

Early variables may be able to use short displacements.
ss783 Reference the 32th real variable declared in a

package. Early variables may be able to use short

displacements.
ss784 Reference the 64th real variable declared in a package.

Early variables may be able to use short displacements.
ss785 Reference the 128th real variable declared in a package.

Early variables may be able to use short displacements.
ss786 Reference the 256th real variable declared in a package.

Early variables may be able to use short displacements.
ss787 Reference the 512th real variable declared in a package.

Early variables may be able to use short displacements.
ss788 Reference the 1024th real variable declared in a

package. Early variables may be able to use short displacements.
ss789 Reference the 2nd real field declared in a record.

Early fields may be able to use short displacements.
ss790 Reference the 8th real field declared in a record.

Early fields may be able to use short displacements.
ss791 Reference the 16th real field declared in a record.

Early fields may be able to use short displacements.
$s792 Reference the 32th real field declared in a record.

Early fields may be able to use short displacements.
ss793 Reference the 64th real field declared in a record.

Early fields may be able to use short displacements.
ss794 Reference the 128th real field declared in a record.

Early fields may be able to use short displacements.

111

Problem Test Name l Problem Test Description

ss795 Reference the 256th real field declared in a record.
Early variable may be able to use short displacements.

ss796 Reference the 512th real field declared in a record.
Early fields may be able to use short displacements.

ss797 Reference the 1024th real field declared in a record.
Early fields may be able to use short displacements.

ss798 Reference the Oth real field declared in a record.
Early fields may be able to use short displacements.

ss799 Addition of variables of type CALENDAR.TIME

ss800 Greater than comparison of type CALENDAR. TIME

ss801 | Equal comparison of type CALENDAR.TIME

55802 Comparison of type DURATION with SECONDS(TIME2)

$s803 Call on CALENDAR.TIME.OF

ss804 Assign an access type to NULL. -

ss805 Exchange two non-null access type variables.

ss806 Test of math_dep.INTEXP function on literal

ss807 Test of math_dep.ADX function on literals

ss808 Test of math_dep.SETEXP function on literals

ss809 Test of math dep.INTEXP function on vanables

ss810 Test of math dep. ADX function on variables

ss811 Test of math dep.SETEXP function on variables

ssearch Serial search 1D array of float.

ssearch2 Serial Search 1D array of float for matching
component, unrolling the search loop 4 times.

strength Optimization test. Constructed so that systems which
do strength reduction will do well.

tak Classical test of procedure calling and parameter
passing. This is the " TAK" function in Ada adapted
from the book " Performance and Fvaluation of Lisp
Systems,” by R. Gabriel, MIT Press, 1985. It is a
vanant of a program originally developed by lkuo
Takeuchi.

target | classical test from CFA study, target tracking N

112

Problem Test Name u)roblem Test Description

taskl language feature test, task creation and termination

task2 language feature test, task creation and termination.
Uses a procedure which declares 10 tasks of the same
task type. Implies synchronization with these tasks
to terminate the procedure.

task3 Simple rendezvous with task making entry call
arriving at rendezvous first.

task4 Language feature test of aspects of tasking.
Passes a nonscalar parameter. Conditional select statement
with WHEN clause.

taskb Language feature test of aspects of tasking. Always
takes ELSE alternative.

task6 Language feature test of aspectS of tasking.)
Tests access time to dynamic attributes.

task7 Language feature test of aspects of tasking. Classic
test. Uses rendezvous with scalar parameters, simple
arithmetic.

task8 Language feature test of aspects of tasking. Classic
test. Uses rendezvous with scalar parameters, simple
arithmetic.

task9 Language feature test of aspects of tasking. Classic
test. Uses rendezvous with scalar parameters, simple
arithmetic.

task10 Language feature test of aspects of tasking. Classic
test. Uses rendezvous with scalar parameters, simple
arithmetic.

taskll Language feature test of aspects of tasking.

Entering tasks make a sequence of entry calls.
Accepting task contains a sequence of ACCEPTs with
DOs containing a simple code sequence. Accepting
task will arrive at rendezvous first.

113

Problem Test Name [Prol)lem Test Description

taskl?2

Language feature test of aspects of tasking.
Entering tasks make a sequence of entry calls.
Accepting task contains a SELECT with a list of
alternatives with a DO containing a simple code
sequence. Accepting task will arrive at rendezvous
first.

taskl3

task14

task15

task16

language feature test of aspects of tasking.

Entering tasks make a sequence of entry calls.
Accepting task contains a sequence of ACCEPTs with
DO containing a simple code sequence. Some code
outside of the rendezvous. Accepting task will

arrive at rendezvous first.

Language feature test of aspects of task'iné.v

Entering tasks make a sequence of entry calls.
Accepting task contains a select statement with WHEN
clauses, only one of which is satisfied. Accepting

task will arrive at rendezvous first.

Language feature test of aspects of tasking.

Entering tasks make a sequence of entry calls. Accepting task
contains a conditional select statement with WHEN
clauses, none of which is satisfied. Accepting task
will arrive at rendezvous first.

Language feature test of aspei:ts of fasking.'
Entering tasks make a sequence of entry calls. Accepting task
contains a conditional select statement with WHEN

clauses, none of which is satisfied. No open

alternative, no waiting tasks. Selected alternative

is "DELAY minus one;”. Accepting task will arrive

at rendezvous first.

114

Problem Test Name | Problem Test Description

task17 Language feature test of aspects of tasking.

Accepting task contains a conditional select statement with WHEN
clauses, all of which are satisfied. There are no

tasks waiting on accept. The selected alternative

will be null.

task18 Language feature test of aspects of tasking. Accepting
task contains a conditional select statements with
WHEN clauses, none of which is satisfied. Tasks
waiting at all entries. Selected alternative is ELSE.
This test measures the time to test alternatives —
should be fairly fast.

task19 Language feature test of aspects of tasking.

Accepting task contains a conditional SELECT statement with
WHEN clauses, only one of which is satisfied.

Should be tasks waiting on all entries. Accepting

task will arrive at rendezvous first. Test measures

evaluation of alternative guards and picking one

alternative.

task20 Language feature test of aspects of tasking.

Entering tasks makes sequence of entry calls. Accepting task
contains a SELECT statement with WHEN clauses, only
one of which is satisfied. Entering task will

arrive at rendezvous first.

task21 Language feature test of aspects of tasking.

Entering tasks make a sequence of entry calls. Accepting task
contains conditional SELECT with guards, only one of

which is satisfied. Entering task will arrive at

Entering task will arrive at rendezvous first.

115

Problem Test Name

Problem Test Description

task22

Language feature test of aspects of tasking.

Entering

tasks makes sequence of entry calls. Accepting task
contains conditional SELECT with guards, only one of
which is satisfied. Accepting task will arrive at
rendezvous first.

task23

language feature test of aspects of tasking. Simple
rendezvous : task doing accept arrives at rendezvous
first

task24

task25

Language feature test of aspects of tasking. Simple
rendezvous with task making entry call arriving at
rendezvous first. Task performing the accept is in

a subunit.

Language feature test of aspects of tasking. Classic
test. Uses rendezvous with scalar parameters, simple
arithmetic.

task26

task27

task28

language feature test of aspects of tasking. Simple
rendezvous with task making entry call arriving at
rendezvous first. Task performing the accepts is

in separate package.

Langua“ge feature test of asp'ect;of'ta'sking. '
Rendezvous with the task making an entry call
arriving at rendezvous first. Brackets each ACCEPT
with a SELECT/END pair.

Language feature test of aspects of tasking.
Rendezvous with the task making an ENTRY call
arriving first. Brackets each ACCEPT with a SELECT/
END pair containing WHEN clauses which can be
evaluated at compile time.

116

Problem Test Name] Problem Test Description

task29

Language feature test of aspects of tasking.
Rendezvous with the task making an ENTRY call
arriving at the rendezvous first. Brackets each

ACCEPT with a SELECT/END pair containing WHEN
clauses which can be evaluated at compile time.

task30

Language feature test of aspects of tasking.
Selective wait in accepting task. Task will be
waiting on accept and DELAY alternative will not
be taken. It should not be necessary to setup

the DELAY and then cancel it.

task31

task32

Language feature test of aspects of tasking.
Selective wait in accepting task. Will take the delay
alternative, and then the entry call will be made.
With canonical implementation, the system will have
to cancel the DELAY notification it sets up to
awaken the task if an entry was not made within the
specified delay.

Language feature test of aspects of tasking.
Conditional wait in accepting task, will always take
the ELSE alternative.

task33

task34

‘the ELSE alternativg.

Language feature test of aspects of tasking.
Conditional wait in accepting task, will always take
Language feature test of aspects of tasking. -
Selective wait in accepting task. Will always take the delay
alternative, which will expire without an entry call

being made.

task34 _delta

Simple delay to compare with task34.

task35

Language feature test of aspects of tasking.

Selective wait in accepting task. Will always take the DELAY
alternative, which will expire without an entry call

being made.

task3b delta

Provide a delay 0.0 for comparison with task35.

117

Problem Test Name | Problem Test Description

task36 Language feature test of aspects of tasking.

Entering task makes a sequence of calls. Accepting task
contains a conditional SELECT with ELSE alternatives
which are never taken. Entering task will arrive at
rendezvous first.

‘task37a Language feature test of aspects of tasking. This
program raises a user-defined exception inside a
rendezvous.

task37b Language feature test of aspects of tasking. Compare

this program to task37a. Creates and normally
terminates the tasks while task37a forces abnormal
termination of test.

task38 Language feature test of aspects of tasking. This
program makes an entry call on an aborted task.

Will raise a TASKING ERROR exception.

task39 Language feature test of aspects of tasking. This
program aborts a task which is already aborted.

task40 Language feature test of aspects of tasking. This
program creates a task which aborts itself.

task4l Language feature test of aspects of tasking. Simple

rendezvous. One task in library unit. Accepting
task will arrive at rendezvous first.

task4?2 Language feature test for aspects of tasking.
Simple rendezvous with equal priority tasks, one task in
library unit.

task43 Language feature test for aspects of tasking.

Simple rendezvous with equal priority tasks, both tasks in
same compilation unit.

task44a Higher priority task becoming eligible to run during
rendezvous of lower priority tasks.
task44b Higher priority task becoming eligible to

run during rendezvous of lower prionity tasks.

118

Problem Test Name | Problem Test Description

task45a Higher priority task becoming eligible to run during
running of lower priority task.
task45b Higher priority task becoming eligible to run during

running of lower priority task.

task46 Task with a terminate option which is taken.
task46x | Task with a terminate option which is not taken.
task47 Bounded buffer with scalar parameter

task48 Entries tied to interrupt are called directly.
task49 A call to one of an entry family.

task50 The LRM does not require that there be a unique

to present a test problem which has multiple accept
statements for the same entry to see if this
introduces additional overhead.

accept statement for each entry. The purpose of this test is

task51 To dynamically allocate a new record which contains a
task of higher priority than the allocating task. The
created task does nothing. This is a test of dynamic
task creation/termination.

task52 To measure the time for a simple rendezvous with a
task created as a component of a dynamically allocated
record. The time of task creation/termination is

excluded.

task53 To measure the time for a task to abort a different
task. The aborted task is also created on each
iteration.

task54 mod To measure the time required when a task specifies

an inadequate storage size with a static expression.
The resulting exception is handled with a null
statement.

task55_mod To measure the time required when a task specifies
an inadequate storage size with a dynamic expression.
The resulting exception is handled with a null
statement.

119

Problem Test Name 1 Problem Test Description

task56

To measure the time required when a task specifies an

adequate STORAGE_SIZE with a static expression. The

_task body performs a simple call on proc0.

“task57

To measure the time for a simple rendezvous with a
task created as a component of a dynamically allocated
record. The time of task creation/termination is
excluded.

task58

task59

To measure the time required when a task has

multiple open accepts. The accepts can theoretically be done
in a nondeterministic order. Each open select will

be accepted one time for each iteration of the

timing loop. The test notes whether or not the

accepts were done in lexical order.

To evaluate the performance of a task with multiple

delay alternatives. The LRM permits a select to have
multiple delay alternatives.

task60

t-ask_'num’_i

task_num_5

To measure the time required when a task has

multiple accepts and is forced to process them in lexical order
by opening them one at a time in lexical order. This

is done in order to compare with the

nondeterministic case. Each select will be opened

and accepted one time (in lexical order) for each

iteration of the timing loop.

Test the performance of rendezvous when you vary

the number of tasks. This test has only 1 task.

Test the performance of rendezvous when you vary
the number of tasks. This test has 5.

task num 10

Test the performance of rendezvous when you vary
the number of tasks. This test has 10.

task num 15

Test the performance of rendezvous when you vary
the number of tasks. This test has 15.

task_num_20

Test the performance of rendezvous when you vary

7 rthe l}umber of tasks. Thi; test has 20.

120

Problem Test Name] Problem Test Description

task num 25 Test the performance of rendezvous when you vary
the number of tasks. This test has 25.
task_num_30 Test the performance of rendezvous when you vary
the number of tasks. This test has 30.
task2_num_1 Test the performance of rendezvous when you vary
the number of tasks. This test has 1.
task2_num.b Test the performance of rendezvous when you vary
the number of tasks. This test has 5.
task2 num 10 Test the performance of rendezvous when you vary
the number of tasks. This test has 10.
task2 num 15 Test the performance of rendezvous when you vary
the number of tasks. This test has 15.
task2_num_20 Test the performance of rendezvous when you vary
the number of tasks. This test has 20.
task2_num_25 | Test the performance of rendezvous when you vary
the number of tasks. This test has 25.
task2.num_30 Test the performance of rendezvous when you vary A

the number of tasks. This test has 30. This
will queue up 31 entry calls on one accept before
being processed.

triel A trie test, this test inserts each of 20 keys
in the trie in ascending order, and then deletes
them in descending order. It will fail if a
duplicate is found during insertion, or if
a key is not found during deletion. A TRIE is
also known as a digital search tree. Refer to
The Art of Computer Programming, Volume 3, Searching
and Sorting, by D. Knuth, Addison Wesley, 1973, for
a detailed discussion.

121

Problem Test Name l Problem Test Description

trie2

A trie test, this problem searches for each key
present in trie, and for an equal number of keys
which are not present in the trie. It will

fail if the records in the trie are not found, or

if records which are not in the trie are found.
Trie size is 20 records.

unreach

Optimization test. Systems which do a good job of
eliminating unreachable code will do well on.
Primarily a test of space.

whetl

classical test (whetstone), general workload

whet?2

Classical test. Whetstone benchmark with suppression
of constraint checking.

whet3

Classical test, Whetstone benchmark, extended
precision, checking enabled.

whet4

Classical test. Whetstone benchmark, single
precision, optimize=space, checking suppressed.

122

5.2 Appendix II, TEST PROBLEM TO SOURCE FILE MAP

This appendix provides a cross reference between the test problem name and the file that
contains it.

123

Problem Test Naime | Problem Source File Name

a_star A_STAR

ackerl | HANSON]

acker2 | ACKER2
Tactivationl [ACTIWVE
“activation2 [ACTIVE

ai_create_delete_kb AIFRAME

ai_create_object AIFRAME

21load_kb_from_file AIFRAME

ai modify object AIFRAME

ai query AIFRAME

aliasl ALIAS

alias2 ALIAS

alias3 ALIAS

alias4 ALIAS

aliasb | ALIAS -
alias5x N ALIAS

alias6 o | ALIAS

alias6x ALIAS

alias7T - | ALIAS o
alias7x ALIAS

alias8 ALIAS

alias8x ALIAS

alias9 ALIAS

alias10 ALIAS

aliasll ALIAS

alias12 ALIAS

alias13 ALIAS

aliasl4 ALIAS

alias1s | ALIAS -
aliast6é | ALIAS o
arti_asum ' ART!

arti_atan2 ARTI

124

Problem Test Name | Problem Source File Name

arti_cos ARTI

arti_fmod ARTI

arti ifpm control ARTI

arti ifpm init ARTI

Srtidfpmio AR —
arti_ifpm_rotors ARTI

arti_nainini ARTL
arti_nscni ARTI

arti_nutmini ART! o
arti_sin ARTI "
asyncl ASYNC1

async?2 ASYNC2

async3 ASYNC3

async4 ASYNC4

asynch ASYNC5

auto CFA

avl 0 AVL

avl 1 AVL

avl_2 AVL

avl 3 AVL

avl_4 AVL

avl 5 AVL

avl_6 AVL

avl 7 AVL }
avl_8 AVL

avi9 AVL

avi_10 AVL

avl 11 AVL

bmt CFA

bsortl SORT

bsort2 SORT

catl SLICE

cat? SLICE

125

Problem Test Name | Problem Source File Name

cat3 SLICE

ciol Clo

cio2 Cio

cio3 Clo

cio4 ale

“ciob a0

ciob Cl0

co7 Clo o 7
cio8 Clo

¢o9 Cclo . i
ciol0 Cio

cioll Clo

ciol2 clo

ciol3 Clo

ciold cio

cigsort CIQSORT

claimQ1 CLAIMO1

claim02 CLAIMO2

claim03 CLAIMO3

claim04 CLAIMO4

claim05 ‘| CLAIMOS

claim06 CLAIMO06 .
claim07 CLAIMO7T
‘claim08 | CLAIMOB
claim09 CLAIMO9

claim10 CLAIM10

claimll CLAIM11

claim12 CLAIM12

claim13 CLAIM13

claiml4 CLAIM14

claim15 CLAIM15

claim16 CLAIM6

claiml7 CLAIM17

126

Problem Test Name | Problem Source File Name

claiml18 CLAIM18

claim19 CLAIM19

claim20 CLAIM20

claim21 CLAIM21

claim?22 CLAIM22

dam23 | CtAM23
claim24 | CLAIM24 o
claim25 "CLAIM25 B
claim26 | CLAIM26 -
caim27 i “CLAIM27
claim28 CLAIM28

claim29 CLAIM29

claim30 CLAIM30

claim31 CLAIM31

claim32 CLAIM32

claim33 CLAIM33

claim34 CLAIM34

claim35 CLAIM35

claim36 CLAIM36

claim37 ‘CLAWM3T
claim38 | CLAIM38

caim39 | CLAIM39 -
claima0 CLAIM40

claim4l | cLamar)
claim42 CLAIM42

claim43 CLAIMA43

claim44 CLAIM44

claim4b CLAIM45

claimd6 CLAIM46

claim47 CLAIMAT

common TECH

complex record01 C RECORD

complex_record(2 C.RECORD

127

Problem Test Name [Problem Source File Name

complex_record03 C RECORD
complex record04 C RECORD
complex record05 C RECORD
complex record06 C RECORD
complex_record07 C_RECORD
complex_record08 | CCRECORD
complex_record(09 C_.RECORD
consistentl coN
consistent?2 CON
consistent3 CON
consistent4 CON
consistent5 CON
consistent6 CON
consistent? CON

crc0 CRC

crcl CRC

cre2 CRC

cre3 CRC

crcd CRC

csel CSE

cse2 ' CSE

cse3 CSE

csed | CSE .
cseb CSE

cseb CSE

cse? CSE

cse8 CSE

cse9 CSE

csel0 CSE

d library 1 D LIB

d library 2 D LIB

d library 3 D LIB
d_library 5 D_LiB

128

Problem Test Name | Problem Source File Name

d library 6 D LiB

d library 7 D LIB

d library 8 D LIB
dead TECH
delayl DELAYS
delay? DELAYS
deiay3 DELAYS
delay4 DELAYS
delay5 DELAYS
delay6 DELAYS
delay7 DELAYS
delay8 DELAYS
delay9 DELAYS
delay10 DELAYS
delayll DELAYS
delay12 DELAYS
delayl3 DELAYS
delayl4 DELAYS
delay_abort1 D_ABORT
delay_abort2 D_ABORT
delay_zeroQ DELAYO
delay_zerol DELAY1.3
delay_zero2 DELAY1.3
delay_zero3 DELAY1.3
delay_zero4 DELAY4.6
delay_zerob DELAY4.6
delay_zero6 DELAY4.6
delay zerobx DELAY6X
delay zero7 DELAY7
delay zero8 DELAYS8
desl DES1
des? DES2
des3 DES3

129

Problem Test Name u’roblem Source File Name

desd DES4

des4a DES4

des5 DESS

desba DES5

des6 DES6)
“desba |DES6
des7 DES7

des7a DES7

dhrysl WITHDRAWN

‘dhrys1.mod |DHRYST
dhrys?2 WITHDRAWN

dhrys2_mod DHRYS2

dhrys3 WITHDRAWN

dhrys3 mod DHRYS3

elabl ELAB1

elabl0 ELAB?2

elab?2 ELAB1

elab3 ELAB1

elab4 ELAB1

elab5 ELAB1 o
elab6 ELAB2

elab7 ELAB2 o
elab8 ELAB2

elab9 ELAB2 7
enum_iol ENUM_IO

enum_io2 ENUMLIO

enum_io3 ENUM_IO

enum io4 ENUM 10

enum i05 ENUM 1O

enum 106 ENUM 10

enum io7 ENUM IO

enum i08 ENUM 102

enum_io9 ENUM_IO3

130

Problem Test Name LProblem Source File Name

ew EW

filterl FILTER

filterli FILTER

filter2 FILTER

filter2i FILTER

filter3 FILTER . -
fiterd | FILTER
fitht | FIRTH -
firthlx ~ |FIRTH o
firtha |FIRTH
firth2x FIRTH

firth2y FIRTH

firth3 FIRTH

firth3x FIRTH

firth4 FIRTH

firthdx FIRTH

firthb FIRTH

firth5v FIRTH

firthbw FIRTH

firth5x FIRTH .

firth5y | FIRTH -
firth5z FIRTH - .
firth6 FIRTH

firth6x FIRTH

firth7 FIRTH

firth7x FIRTH7X

fold WITHDRAWN

foldl FOLD

fold2 FOLD

fold3 FOLD

fold4 FOLD

fold5 FOLD

fold6

FOLD

131

Problem Test NamelProblem Source File Name

fold7 FOLD
fold8 FOLD
fold mod TECH
forward eulerl SA8TEST
forward_euler2 SA8TEST
funcexcp FUNCEXCP
gamm GAMM
gamm?2 GAMM?2
heapify CFA
idioms TECH
instl INST
inst2 INST
inst3 INST
inst4 INST
inst5 INST

int 0 INT 0
int 1 INT 1
int 2 INT 2
int_3 INT_3
int 4 INT 4
int5 INT5
int 6 INT6
int.7 INT_7
int_8 INT.8
int_9 INT.9
invar TECH
100 IOTEST1
iol IOTEST1
i02 IOTEST1
i03 IOTEST1
io4 IOTEST1
105 IOTEST1
106 IOTEST1

132

Problem Test Name | Problem Source File Name

io7 IOTEST1

i08 IOTEST1

109 [OTEST1

i010 IOTEST1

ioll IOTEST2

1012 IOTEST2

w0l3 " li0TEST2
iold -~ |I10TEST2

iol5 [OTEST2

ol6 |1O0TEST2
iol7 IOTEST3

i018 IOTEST3

iol9 IOTEST3

1020 IOTEST3

i021 IOTEST3

1022 IOTEST3

i023 IOTEST3

i024 IOTEST4

1025 IOTEST4

26 | 1OTESTA
027 - | 10TEST4
028 | 10TEST4 i
i029 | IOTEST4 -
030 | 1I0TEST4 B
i0.80.20_1 10_80A

i0.80.20_2 10_80A

i0.80.20_3 10_80A

io 80 20 4 10 80A

io 80 20 5 10 80B

io 80 20 6 10 80B

io 80 20 7 10 80B

io 80 20 8 10 80B

i0-80_20_9 10_80B

133

Problem Test Name | Problem Source File Name

io 80 20 10 IO 80B

io copyl 10 COPY

io.copy2 10.COPY

io copy3 10 COPY

io_copy4 10_COPY
“io.interl IO_INTER

io_inter2 IO_INTER

io_inter3 IOLINTER)
io.meml lomMEM
io.mem2 110.MEM
io_.mem3 I0_MEM

io_patternl 10_-PAT

lo_pattern2 I0_PAT

i0. pattern3 10 PAT

io patternd 10 PAT

10 pattern5 10 PAT

io pattern6 10 PAT

10 pattern? 10 PAT

1o_pattern8 10_PAT

io_recurl | IO_-RECUR

io_recur2 | 1I0.RECUR - -
io_recur3 T10.RECUR
ioscanl | I0OSCAN
io_scan2 10.SCAN

10_scan2x I0.SCAN

10_scan3 I0.SCAN

io_scand 10.SCAN

to scanb 10 SCAN

ic scanb 10 SCAN

10 scan7 10 SCAN

o scan8 IO SCAN

io scanll 10 SCAN3

io_scanl2

10 SCAN3

Problem Test Name I Problem Source File Name

KERNEL18

io scanl3 IO SCAN4

1o scanl4 IO SCAN4

io scanlb 10 SCAN4

io scanl6 10 SCAN5S

io_scanl? I0.SCANS

io_scan18 I0_SCANS

jo_unifl TIO.UNIFL o
io_unif2 I0_UNIF1
jounif3 TiwowuNnier
io_unif4 10_UNIF1

o_unif5 I0O_UNIF2

io_unif6 IO.UNIF2

iqsort SORT

kalman KALMAN

kernell KERNEL1

kernel2 KERNEL2

kernel3 KERNEL3

kernel4 KERNEL4

kernel5 KERNELS

kernel6 KERNELS6

ka7 kerner
kernel8 KERNELS

kernel9 KERNEL9

kernel10 | KERNELIO
kernelll KERNEL11

kernell2 KERNEL12

kernell3 KERNEL13

kernell4 KERNEL14

kernellb KERNEL15

kernell6 KERNEL16

kernel16 goto KERNEL16

kernell7 KERNEL17

kernel18

135

Problem Test Nami| Problem Source File Name

kernel19 KERNEL19

kernel20 KERNEL20

kernel21 KERNEL21

kernel22 KERNEL22

kernel23 KERNEL23Z
kernel24 | KERNEL24 -
labd | LABEL

foop0 LOOPO

loopl | LOOP1 B
loop2 " T [LOOP2

loop3 LOOP3

loopda LOOP4A

loop4b LOOP4B

loopdc LOOP4C

loop5 LOOPS

loop6 LOOP6

loop7 LOOP7?

loop8 LOOPS

loop9 LOOP9

loopl0 ~ |[LOOPI0 e
loop11 lLoOP11

loop12 ooz 7
loop13 ~ [LoOP13Z
loopl4 | LOOP14

loop15 LOOP15

loop16 LOOP16

loop17 LOOP17

lu CFA

mergel SORT

merge?2 SORT

neural NEURAL

purel PURE

pure2 PURE

136

Problem Test Name

LProblem Source File Name

pure3 PURE

pured PURE

pureb PURE

pureb PURE

pure? PURE

pure8 PURE

puzzle HANSON
gsortt | SORT

qsort2 - SORT

‘queens WITHDRAWN

queens_mod QUEENS
reclaim_collection.constrained RECLAIM
reclaim_collection_unconstrained RECLAIM

reclaim global heap constrained RECLAIM

reclaim_global heap unconstrained | RECLAIM

reed solomon 0 REED

reed solomon .1 REED

reed solomon 2 REED

reed _solomon_3 REED

reed_solomon.4 REED S
runge CFA

‘stlibrayl |{swuB
slibrary2 - 1sws
slibrary3 JsB o
s_library 5 S-LIB

s_library_6 S_LIB

s library_7 S_LiB

s library 8 SLB

search HANSON

shelll SORT

shell2 SORT

sieve HANSON

simulate_bmbat SIMULATE

137

Problem Test Name l Problem Source File Name

simulate emrpm SIMULATE
simulate hmproto SIMULATE
simulate qmpitch SIMULATE
simulate_rcwfrdet SIMULATE
simulate_umnav SIMULATE
simulate_kmdump SIMULATE
simulate_rmkeying SIMULATE
scel SLICE .
slice2 SLICE B
slice3 SLICE

sliced SLICE

sliceb SLICE

slice6 SLICE

slice? SLICE

slice8 SLICE

ssO S0000T14

ssl 50000714

ss2 S0000T14
ss2_modl S0000T14
ss2_.mod2 S0000T14 i
ss3 150000T14 o
ss4 S00007 14

ss5 S0000T14

556 50000714

ss7 $0000T14

ss8 S0000T14
ss8_mod S0000T14

ss9 S0000T14

ss10 S0000T14

ssll S0000T14

ss12 S0000T14

ss13 S0000T14

ss14 S0000T14

138

Problem Test Name

Problem Source File Name

ss15 S0015T29
ss16 $0015T29
ssl7 S0015T29
ss18 S0015T29
ss19 S0015T29
ss20 S0015T29
ss21 S0015T29
$s22 | S0015T29
ss23 S0015T29
ss24 150015T29
5525 S0015T29
$s26 S0015T29
ss27 S0015T29
ss28 S0015T29
5529 $0015T29
ss30 S0030T44
ss31 50030744
ss32 50030T44
ss33 50030744 _ ‘
ss34 S0030T44
ss35 | S0030T44
ss36 S0030T44
ss37 S0030T 44
$s38 S0030T44
ss39 S0030T44
ss40 S0030T44
ss41 S0030T44
ss41 mod 50030T44
ss4?2 S0030T44
ss42 mod 5S0030T44
ss43 50030744
ss44 $0030T44
ssd45 S0045T59

139

Problem Test Name I Problem Source File Name

ss46 50045759
ssd47 S0045759
ss48 S0045T59
ss49 50045759
ss50 S0045T59 -
ss51 |'seoasTSO
5552 [50045759 o
ssb3 S0045T59
ss54 1 50045T59
5555 S0045T59
ss56 S0045T59
ss57 S0045T59
ss58 50045759
ssh9 S0045T59
ss60 S0060T74
ss61 S0060T74
ss62 S0060T74
5563 S0060T74
ss64 S0060T74
ss65 S0060T74
5566 S0060T74
ss67 50060774
5568 S0060T74
5569 S0060T74
ss70 S0060T74
ss71 S0060T74
ss72 S0060T74
ss73 S0060T74
ss74 S0060T74
ss75 S0075T89
ss76 S0075T89
ss77 S0075T89
ss78 S0075T89

140

Problem Test Name LProblem Source File Name

ss79 S0075T89

ss80 S0075T89

ss81 S0075T89

ss82 50075789

ss83 S0075T89

ss84 ‘| soo75T89
ss85 S0075T89)
586 | soo7sT89
ss87 S0075T89]
ss88 soo75T89
ss89 S0075T89

ss90 S0090T04

ss91 S0090T04

$s92 S0090T04

ss93 S0090T04

ss94 S0090T04

5895 WITHDRAWN

ss95 mod S0090T04

ss96 WITHDRAWN

ss96_mod ‘| soo90TO4
ss97 | WITHDRAWN -
$s97_mod 50090704 7
ss98 ‘WITHDRAWN !
ss98_mod S0090T04 R
ss99 S0090T04

ss100 50090704

ss101 S0090T04

ss102 S0090T04

ss103 S0090T04

ss104 S0090T04

ss105 S0105T19

ss106 S0105T19

ss107 S0105T19

141

Problem Test Name lProblem Source File Name

ss108 S0105T19
5100 S0105T19

ss110 S0105T19

sslll 50105T19

ss112 0105719

ss113 S0105T19
ss114 50105719 -
115 T T [SoiesTie
ss116 50105719

ss117 150105719

ss118 S0105T19

ss119 S0105T19

ss120 S0120T34

ss121 S0120T34

ss122 S0120T34

ss123 S0120T34

ss124 S0120T34

55125 S0120T34

55126 S0120T34

ss127 50120734

ss128 S0120T 34

ss129 | S0120T 34 -
ss130 S0120T34

ss131 'S0120T34

ss132 S0120T34

ss133 50120734

ss134 S0120T34

ss135 $0135748

ss136 50135748

ss137 S0135748

ss138 50135748

ss139 S0135T48

55140 S0135T48

142

Problem Test Name l Problem Source File Name

ss141 S0135T48
ss142 S0135T48
ss143 S0135T48
ss144 S0135T48
ss145 S0135T48
ss146 S0135T48
ss147 S0135T48
ss148 S0135T48
ss149 S0149T61
ss150 50149761
ss151 50149761
ss152 S0149761
ss153 S0149T61
ss154 50149761
ss155 50149761
ss156 S0149T61
ss157 S0149761
ss158 50149761
ss159 50149761
ss160 S0149761
ss161 50149761
$5162 S0162T67
55163 50162767
ss164 50162767
ss165 50162767
ss166 50162767
ss167 S0162T67
ss168 S0168T75
ss169 S0168T75
ss170 S0168T75
ss171 S0168T75
ss172 50168T75
ss173 S0168T75

143

Problem Test Namﬂ Problem Source File Name

ssl74 S0168T75
ss175 S0168T75
ss176 501767182
ss177 50176782
ss178 S0176T82
ss179 - | soi7eT82
ss180 S0176T82
ss181 S0176T82
ss182 S0176T82 i
ss183 50183797
ss184 S0183T97
ss185 S0183T97
ss186 S0183T97
ss187 S0183T97
ss188 50183797
ss189 S0183T97
ss190 50183797
ss191 S0183T97
ss192 50183797
ss193 1 50183797
ss194 S0183T97
ss195 S0183T97
ss196 S0183T97
ss197 50183797
ss198 S0198T12
ss199 50198712
ss200 S0198T12
5201 S0198T12
55202 S0198T12
55203 S0198T12
$s204 S0198T12
55205 S0198T12
55206 $0198T12

144

Problem Test Name l Problem Source File Name

ss207 50198T12
55208 S0198T12
$s209 $0198T12
ss210 S0198T12
ss211 S0198T12
ss212 | so198T12
ss213 S0213T27
ss214 50213727
5215 50213727
$s216 S0213T27
ss216_mod S0213T27
ss217 $0213727
ss218 S0213T27
55219 502137127
ss219 mod S0213T27
55220 S0213T27
ss221 50213727
§s222 S0213T27
$s223 S0213T27
$s224 50213727
55225 50213727
55226 S0213T27
55227 | $0213T27
55228 $0228T41
$s229 $0228T41
$s230 S0228T41
ss231 $0228T41
$s232 $50228T41
ss233 S0228T41
ss234 S0228T41
55235 S0228T41
$s236 50228T41
ss237 S0228T41

145

Problem Test Name [Problem Source File Name

ss238 S0228T41
5239 $0228T41
$s240 S0228T41
ss241 50228T41
55242 S0242T50
55243 50242750
ss244 S0242T750
55245 50242750
$s246 $0242750
ss247 50242750
ss248 S0242T50
5249 S0242T50
ss250 S0242T50
ss251 S0251T5h1
55252 S0252T52
5253 50253753
ss254 S0254T57
ss255 S0254T57
55256 S0254757
$s257 S0254T57
5258 S0258T72
55259 $0258T72
55260 S0258T72
ss261 SQ0258T72
55262 S0258T72
55263 S0258T72
55264 S0258T72
5265 S0258T72
55266 S0258T72
$s267 S0258T72
55268 S0258T72
55269 S0258T72
ss270 S0258T72

146

Problem Test NameLProblem Source File Name

ss271 S0258T72

§s272 $0258T72

ss273 50273785

ss274 S0273T85

ss275 50273T85

55276 50273785

ss277 1502737185

55278 150273785

$s279 150273785 -
55280 1s027318%5
ss281 S0273T85

55282 50273785

5283 S0273T85

5284 S0273T85

55285 S0273T85

5286 50286 T00

ss287 50286 T00

ss288 50286T00

ss289 S0286T00

$s290 50286 T00 .
$s291 150286T00 -
5292 S0286T00 .
$s293 150286T00 -

$5294 S0286T00 ‘
5295 S0286T00

5296 50286700

ss297 50286700

5298 S0286T00

5299 50286 T00

s5300 50286 T00

ss301 S0301T15

s5302 S0301T15

5303 S0301T15

147

Problem Test Name l Problem Source File Name

ss304 S0301T15

ss305 S0301T15

ss306 S0301T15

ss307 S0301T15

ss308 S0301T15

55309 S0301T15

ss310 - |se30Tis
ss311 -~ 1s0301T1I5

ss312 1so301T15
ss313 | 50301715 -
ss314 S0301T15

ss315 S0301T15

ss316 S0316T30

ss317 S0316T30

ss318 S0316T30

ss319 S0316T30

55320 50316730

ss321 S0316T30

$s322 S0316T30

55323 1S0316T30 ’ -
55324 S0316T30

ss325 1 S0316T30 -
55326 150316730 -
$s327 - | s0316T30 o
ss328 S0316T30

ss329 S0316T30

$s330 S0316T30

$s331 S0331T45

ss332 S0331T45

ss333 S0331T45

ss334 S0331T45

ss335 S0331T45

55336 S0331T45

148

Problem Test NameJ Problem Source File Name

ss337 S0331T45

$s338 S0331T45

ss339 S0331T45

ss340 50331745

ss341 S0331T45

ss342 50331745 o
'ss343 |s0331T45
ss344 S0331T45

ss345 | S0331T45 o

ss346 - - 1S0346T53
ss347 S0346T53

55348 50346753

$s349 S0346T53

ss350 S03467T53

ss351 S0346T53

$5352 S0346T53

ss353 50346753

ss354 50354768

ss355 S0354T768

5356 | s0354T68
w357 |somseTes
ss35 | S0354T68
ss359 ' - |'S0354T68 -
55360 S0354T68

ss361 S0354T68

55362 S0354T68

ss363 50354768

ss364 S0354T68

55365 S0354T68

55366 50354768

ss367 S0354T68

55368 S0354T68

55369 S0369T78

149

Problem Test Name I Problem Source File Name

ss370 S0369T78

ss371 S0369778

ss372 S0369778

$s373 50369778

ss374 50369778

ss375 S0369T78

$s376 50369778 -
ss377 - 150369T78
5378 150369778 -
55379 | s0379T93

$s380 S0379T93

ss381 50379793

$5382 50379793

ss383 S0379T93

ss384 S0379T93

ss385 50379793

$s385x 50379793

55386 +1 S0379T93

ss387 S0379T93 - o
w38 sosmetes T
w380 |'s0379T03 o
300 sosetes
5301 lseetes T T
$s392 - | S0379T93

$s393 S0379T93

ss394 50394708

ss395 S0394T08

$s396 S0394T08

ss397 50394708

ss398 50394708

55399 S0394T08

ss400 S0394T08

ss401

50394708

150

Problem Test Name] Problem Source File Name

ss402 50394708

ss403 $0394T08

ss404 S0394T08

ss405 S0394T08

ss406 50394708

ss407 S0394T08

ss408 50394708

$s409 50409723)
ss410 50409723

ss411 1S0409T23 S
ss412 S0409723

ss413 S0409T23

ss414 S0409723

ss415 50409723

ss416 S0409723

ss417 S0409T23

ss418 50409723

ss419 S0409T723

ss420 $0409T23

ss421 | 50409723 -
55422 | S0409T23

ss423 $0409723
ss424 50424738
55425 | 50424738 ' -
55426 50424738

ss427 S0424T738

ss428 50424738

ss429 50424738

ss430 50424738

55431 50424738

55432 50424738

ss433 50424738

ss434

50424738

151

Problem Test Name ‘ Problem Source File Name

ss435 50424738

ss436 S04247T38

ss437 S0424738

ss438 50424738

ss439 $0439T43 o
ss440 | S0439T43 -
saal T lseeseTas T
ss442 | S0439T43 h
ssd443 $0439T43

ss444 ‘| S0444T47
ss445 S04447T47

55446 S0444T47

ssd447 S0444T47

ss448 $0448T49

ss449 $0448T49

ss450 $0450T51

ss451 50450751

ss452 S0452T66

ss453 S0452T66

ss454 50452766 o
ss455 | S0452T66 o ‘
$5456 50452766

ss457 S0452T66

ss458 50452766

ss459 S0452T66

ss460 50452766

ss461 50452766

$s462 S0452T66

55463 S0452T66

ss464 S0452T66

ss465 50452766

ss466 50452766

ss467 S0467T78

152

Problem Test Name | Problem Source File Name

ss468 S0467T78
ss469 S0467T778
ss470 S0467778
ss471 S0467T78
ss472 S0467T78
$s473 | So467T78
ss474 S0467778
ss475 S0467T78
$s476 S0467T78
ss477 | Soa67T78 o
ss478 S0467178
ss479 50479788
ss480 S0479788
ss481 50479788
55482 50479788
ss483 S0479T88
ss484 S0479T788
ss485 50479788
ss486 S0479T88
ss487 'S0479T88 o
ss488 50479788
5489 | soagoT99 -
ss490 50489799
ss491 S0489T99
ss492 50489799
ss493 $0489799
ss494 S04897T99
ss495 50489799
ss496 S0489T99
$s497 S0489T99
55498 S0489T99
5499 50489799
5500 S0500T12

153

Problem Test Name | Problem Source File Name

ss501 S0500T12
55502 S0500T12
ss503 S0500T12
ss504 S0500T12
55505 S0500T12 o
'ss506 - |Sos00T12 -
ss507 1 50500T12
5508 sos00T12
55500 50500712
ss510 50500712
ss511 S0500T12
ssb12 S0500T12
ss513 S0513T28
ss514 S0513T28
ssb15 S0513728
ssb16 S0513T28
58517 S0513728
ss518 S0513T28
ss519 S0513728
$s520 | sos13728
ss521 7 S0513T28 o
ss522 ~|sos13T28
$s523 [S0513T28
55524 | so513728 @
ss525 50513728
ss526 $0513728
55527 S0513T28
s5528 S0513T28
ss529 $0529T42
ss530 50529742
ss531 $0529T42
55532 S0529T42
S0529T42

154

Problem Test Name] Problem Source File Name

ss534 50529742
ss535 50529742
ss536 S0529T42
ss537 S0529T42
ss538 S0529T42
ss539 S50529T42
55540 50529742 -
ss541 $0529T42
5542 180529742
ss542x 50529742)
ssh43 50543757
ssbd4 50543757
ssb45 50543757
55546 S0543T57
ssh47 50543757
ss548 S0543T757
$s549 S0543T57
58550 S0543T57
ss551 S0543T57
55552 S0543T57
ss553 S0543T57
$s554 50543757
ss555 S0543T57
55556 S0543T57
ss557 S0543757
ss558 S0558T74
ss559 S0558T74
$s560 S0558T74
ss561 S0558T74
ss561x S0558T74
5§562 S0558T74
ss563 S0558T74
ss564 50558774

155

Problem Test Name l Problem Source File Name

ss565 S0558T74

ss566 S0558T 74

ss567 S0558T 74

ss568 S0558T 74

55569 S0558T74

ss570 | Sos58T74 R
ss571 S0558T74

ss572 S0558T74

ss573 | So558T74 S
ss574 'S0558T74 o
ss575 S0575T89

ssh76 S0575T89

ss577 S0575T89

ss578 S0575T89

ss579 S0575T89

5580 S0575T89

ss581 S0575T89

55582 S0575T89

ss583 S0575T89

ss584 50575789

ss585 S0575T89

5586 S0575T89

ss587 50575789

'$s588 | S0575T89 -
5589 S0575T89

55590 S0590T97

ss591 S0590T97

$s592 S0590T97

$s593 S0590T97

5594 S0590T97

5595 S0590T97

55596 S0590T97

ss597 S0590797

156

Problem Test Name LProblem Source File Name

ss598 50598T05

ss599 S0598T05

ss600 S0598T05

ss601 50598705

55602 S0598T05

ss603 S0598T05

ss604 150508T05 -
wo05 |soseetos
$s606 S0606T12

ss607 | s0606T12 -
ss608 S0606T12

ss609 50606712

ss610 S0606T12

ss611 S0606T12

ss612 S0606T12

ss613 S0613T15

ss614 S0613T15

ss615 S0613T15

ss616 S0616T30

5617 50616730

ss618 S0616T30 '
$s619 S0616T730 -
55620 S0616T30 -
$5621 S0616T30

55622 S0616T30

55623 S0616T30

ss624 S0616T30

ss625 S0616T30

55626 S0616T30

$s627 50616730

$s628 S0616T30

$s629 S0616T30

ss630

S0616730

157

Problem Test Name | Problem Source File Name

ss631 S0631T44

ss632 S0631T44

ss633 S0631T44

ss634 S0631T44

55635 _ S0631T44 L
5636 - |S0631T44 .

85637 : S0631T44

55638 S0631T44

ss639 S0631T44

55640 S0631T44

ss641 S0631T44

55642 S0631T44

55643 S0631T44

ss643x S0631T44

ss644 S0631T44

ss645 50645751

55646 S0645T51

ss647 S0645T51

55648 S0645T51

wot0 |soesTst
55650 50645751

ss651 | S0645T51

55652 © | Soesates
$s653 150652166
ss654 50652766

ss655 50652T66

55656 S0652T66

ss657 50652766

55658 50652766

$5659 S0652T66

$s660 S0652T66

ss661 50652766

$5662 50652766

158

Problem Test Name [Problein Source File Name

55663 50652766

ss664 S0652T66

$s665 S50652T66

ss666 S0652T66

ss667 S0667T81

ss668 50667781]
w660 T|soeerter T
ss670 | sSoeerT8l
ss671 150667781

ss672 | S0667T81

ss673 S0667T81

ss674 S0667T81

ss675 S0667T81

ss676 S0667T81

ss677 S0667T81

ss678 S0667T81

ss679 50667781

55680 S0667T81

ss681 50667781

55682 | S0682T86 -
$ss683 1 50682T86 N -
w684 7 |Sogeates T
<685 Tsoes2tes T
ss686x | so682T86
ss686y S0682T86

ss687 S0687T01

$s688 50687701

$s689 50687701

$s690 S0687T01

ss691 S0687T01

$s692 S0687T01

$s693 S0687T01

55694

| Soe87TOL

159

Problem Test Name | Problem Source File Name

5695 S0687T01

5696 S0687T01

$s697 S0687T01

5698 S0687T01

ss699 S0687T01

ss700 1S0687T01 T
ss701 S0687T01

ss702 S0702T16

ss703 's0702T16
ss704 so702T16
ss705 S0702T16

ss706 S0702T16

ss707 50702T16

ss708 S0702T16

ss709 S0702T16

ss710 S0702T16

ss711 S0702T16

ss712 S0702T 16

ss713 S0702T16

ss714 | S0702T16 o
ss715 1so702T16
ss716 $0702T16

ss717 50717720

ss718 S0717T20

ss719 S0717T20

ss720 S0717T20

ss721 X0721T23

ss722 X0721T23

ss723 X0721723

ss724 WITHDRAWN

ss724 mod S0724T40

ss725 WITHDRAWN

ss725_mod S0724T40

160

Problem Test Name l Problem Source File Name

ss726 WITHDRAWN

$§726 mod S0724T40

ss727 WITHDRAWN

ss727 mod S0724T40

ss728 WITHDRAWN

ss728_mod | S0724T40

5729 WITHDRAWN
'ss729_mod 150724740 7
ss730 ' WITHDRAWN
ss730_mod 1S0724T40 o
ss731 WITHDRAWN

ss731_mod S0724T40

ss732 WITHDRAWN

ss732_mod S0724T40

ss734 WITHDRAWN

ss734 mod S0724T40

ss735 WITHDRAWN

ss735 mod S0724T40

ss736 WITHDRAWN

ss736_mod - | S0724T40 o
ss737 | WITHDRAWN
ss737.mod | SO724T40
ss738 | WITHDRAWN -
ss738_mod S0724T40

ss739 WITHDRAWN

ss739_mod S0724T40

ss740 WITHDRAWN

ss740 mod S0724T40

ss741 S0741741

ss744 S0744T46

ss745 50744746

55746 S0744T46

ss747 X0747747

161

Problemn Test Name [Problem Source File Name

ss748 S0748T50

ss749 S0748T50

ss750 S0748T50

ss751 S0751757

$s752 S0751T57

ss753 | 50751757

ss754 | 50751757 -
ss755 S0751T57 .
ss756 | 50751757 -
ss757 | S0751T57

ss758 S0758T60

ss759 S0758T60

ss760 S0758T60

ss761 S0761T63

ss762 S0761T763

ss763 50761763

ss764 S0764778

ss765 S0764T78

55766 50764778

ss767 | So764T78

ss768 1'so764T78
ss769 S0764778 o
ss770 | So764T78
771 | s0764T78
ss772 S0764T78

ss773 S0764T78

ss774 S0764T78

ss775 S0764T778

ss776 S0764T78

ss777 50764778

ss778 S0764T78

ss779 S0779T788

ss780

50779788

162

Problem Test Name | Problem Source File Name

ss781 S0779788

55782 S0779T88

ss783 50779788

ss784 S0779T88

ss785 S0779T88

55786 ~ " | SerroT88
5787 S0779T88

ss788 R S0779T88

s someetes
ss790 | so789T98 -
ss791 50789798

ss792 S0789T98

55793 S0789T98

55794 S0789T798

ss795 S0789T98

$s796 50789798

ss797 S0789798

ss798 S0789T98

w19 [somotos
55800 S0799T05

55801 B 50799705

55802 | 50799705

5803 | so799TOS
ss804 | S0799T05

$s805 S0799T05

55806 S0806T11

ss807 S0806T11

ss808 S0806T11

ss809 S0806T11

ss810 S0806T11

ss811 S0806T11

ssearch SSEARCH

ssearch2 SSEARCH?2

163

Problem Test Name I Problem Source File Name

strength TECH

tak TAK

target CFA

taskl TASK1

task?2 TASK2

task3 1 TASK3

taské | TASk&a
taskb - | TASKs o
taské | TASK6 -
‘task7? | TASK7 o -
task8 TASKS8

task9 TASK9

task10 TASK10

task1l TASK11

taskl12 TASK12

taskl3 TASK13

task14 TASK14

task15 TASK15

task16 TASK16 e
task17 TASK17 -
task18 | TASK18 a -
task19 ‘TASK19 -
task20 TASK20 7
task21 TASK21
task22 TASK22

task23 TASK23

task24 TASK24

task25 TASK?25

task26 TASK26

task27 TASK27

task28 TASK?28

task29 TASK29

task30 TASK30

164

Problem Test Name [Problem Source File Name

task31 TASK31

task32 TASK32

task33 TASK33

task34 TASK34

task34 _delta TASK34

task35 TASK35

task35_delta | TASK35 ‘
task36 | TASK36

“task37a TASK37

task37b | TASK37)
task38 TASK38

task39 TASK39

task40 TASK40

task41 TASK41

task42 TASK42

task43 TASK43

task44a TASK44

task44b TASK44

task45a TASK45

task45b TASK45

task46 ' - | TASKe6
task46x | TASK46 -
taskd7 | TASK47
taskd8 TASK48)
task49 TASK49

task50 TASK50

task51 TASK51

task52 TASKS2

task53 TASKS53

task54 WITHDRAWN

task54 mod TASK54

task55 WITHDRAWN

task55_mod TASK55

165

Problem Test NameJ Problem Source File Name

task56 TASK56

task57 TASKS7

task58 TASKS58

task59 TASK59

task60 TASK60
task.num.1l | TASKSYS
task-num5 | TASKSYS
task-num.10 | TASKSYS
task_.num15 | TASKSYS -
task_num20 TASKSYS
task_num_25 TASKSYS

task_-num_30 TASKSYS

task2_num_1 TASKSYS2

task2 num 5 TASKSYS2

task2 num 10 TASKSYS2

task2 num 15 TASKSYS2

task2 num 20 TASKSYS2

task2 num 25 TASKSYS?2

task2_num_30 TASKSYS2

tiel | TRIE o

trie2 TRIE

unreach | TECH

whetl | WHETL
whet2 | WHET2

whet3 WHET3

whet4 WHET4

166

5.3 Appendix III, TAPE DESCRIPTION

This appendix contains a complete list of the 697 files on the delivery tape. These files use
approximately 8.2 megabytes of disk storage.

Tape Description

ACKER2.A ACTIVE.A AIFRAME.A
ALIAS.A ARTLA ASMNUL.MAR
ASYNC1.A ASYNC2.A ASYNC3.A
ASYNC4.A ASYNC5.A AVL.A

A STAR.A CFA.A CIO.A
CIQSORT.A CLAIMO1.A CLAIMO2.A
CLAIMO3.A CLAIMO4.A CLAIMO5.A
CLAIMO06.A CLAIMO7.A CLAIMO8.A
CLAIMO09.A CLAIM10.A CLAIM11.A
CLAIM12.A CLAIM13.A CLAIM14.A
CLAIM15.A CLAIM16.A CLAIM17.A
CLAIM18.A CLAIM19.A CLAIM20.A
CLAIM21.A CLAIM22.A CLAIM23.A
CLAIM24 A CLAIM25.A CLAIM26.A
CLAIM27.A CLAIM28.A CLAIM29.A
CLAIM30.A CLAIM31.A CLAIM32.A
CLAIM33.A CLAIM34.A CLAIM35.A
CLAIM36.A CLAIM37.A CLAIM38.A
CLAIM39.A CLAIM40.A CLAIM41.A
CLAIMA42 A CLAIM43.A CLAIM44 A
CLAIM45.A CLAIM46.A CLAIMA47 A
CLEANUP_DBG_FILES.COM CMP.COM CMP_1.DBG.COM
CMP_ACEC.UNX CMP_BASE.UNX CMP_CK.COM

CMP DIFF NAMES.COM CMP DIFF NAMES.UNX CMP SP.COM

CMP T.UNX CMP TOOLS.UNX CMP TS.UNX
CMP_TST_PR.UNX COMPILE_.ACEC.COM COMPILE.AND_.RUN.COM
COMPILE_BASELINE.COM COMPILE_FORMAT.COM COMPILE.TEST_SUITE.COM
COMPILE TOOLS.COM COMP TIME.ADA COMP TIME.DUMMY

COMP_TIME.VAX CON.A CRCA

167

CSE.A
DBG01.COM
DBG02.ADA
DBG02_T.COM
DBGO3 T.ADA
DBG04.COM
DBGO05.ADA
DBG06.COM
DBGO7 T.ADA
DBG08.COM
DBG10.ADA
DBG11.COM
DBG12B.ADA
DBG14_T.ADA
DBG15.COM
DBG16.1.COM
DBG17.COM
DBG19.ADA
DBG20.COM
DBG21 T.ADA
DBG22.COM
DBG24.ADA
DBG25.COM
DBG27.ADA
DBG28.COM
DBG.TEMPLATE. TXT
DBL MATH.PORT
DELAY1.3.A
DELAY7.A
DEPTEST.ADA
DES3.A
DES6.A
DHRYS2.A
DIAGFILL.COM
DIAGREAD.ADA
DIA_E02A.ADA

Tape Description

C RECORD.A
DBGO1.T.ADA
DBG02.COM
DBG03.ADA
DBGO3 T.COM
DBG04.T.ADA
DBG05.COM
DBGO07.ADA
DBGO7 T.COM
DBG09.ADA
DBG10.COM
DBG12A.ADA
DBG13.T.ADA
DBG14.T.COM
DBG16.ADA
DBG16 2.COM
DBG18.ADA
DBG19.COM
DBG20_T.ADA
DBG21 T.COM
DBG23.ADA
DBG24.COM
DBG26 T.ADA
DBG27.COM
DBG29.ADA
DBL-MATH.ADA
DBL MATHTEST.ADA
DELAY4.6.A
DELAY8.A
DES1.A
DES4.A
DES7.A
DHRYS3.A
DIAGLINK.COM
DIA EO1A.ADA
DIA_E02B.ADA

DBGO01.ADA
DBGO01.T.COM
DBG02_T.ADA
DBG03.COM
DBGO04.ADA
DBG04_T.COM
DBG06.ADA
DBG07.COM
DBG08.ADA
DBG09.COM
DBG11.ADA
DBG12A.COM
DBG13.T.COM
DBG15.ADA
DBG16.COM
DBG17.ADA
DBG18.COM
DBG20.ADA
DBG20.T.COM
DBG22.ADA
DBG23.COM
DBG25.ADA
DBG26.T.COM
DBG28.ADA
DBG29.COM
DBL_MATH.DEC
DELAY0.A
DELAY6X.A
DELAYS.A
DES2.A
DESS5.A
DHRYS1.A
DIAGCOMP.COM
DIAGNOS.COM
DIA E01B.ADA
DIA_EO3A.ADA

168

DIA E03B.ADA
DIA_EQ3E.ADA
DIA_EO3H.ADA
DIA_E04B.ADA
DIA E05B.ADA
DIA_EO7A.ADA
DIA_E08B.ADA
DIA E11A.ADA
DIA_E12C.ADA
DIA_E13A.ADA
DIA_E16A .ADA
DIA E17B.ADA
DIA_L02B.ADA
DIA_LO3A.ADA
DIA_LO4A ADA
DIA RO1A.ADA
DIA_R02C.ADA
DIA_R04A.ADA
DIA_R05B.ADA
DIA W02A.ADA
DIA_.WO03A.ADA
DIA_W04C.ADA
DIA W05B.ADA
DIA WO07A.ADA
DIA_W10A.ADA
DIA_W13A.ADA
DIA W14B.ADA
DIA.W15C.ADA
DIA_W18A.ADA
D_LIB.A

ENUM I0.A
EW.A
FIRTH7X.A
FORMAT.COM
GAMM.A
GETADR.MAR

Tape Description

DIA E03C.ADA
DIA_EO3F.ADA
DIA_E031.ADA
DIA_E04C.ADA
DIA E0SC.ADA
DIA_EO7B.ADA
DIA_E09A.ADA
DIA E12A.ADA
DIA_E12D.ADA
DIA_E14A.ADA
DIA_E16B.ADA
DIA LO1A.ADA
DIA_L02C.ADA
DIA_LO3B.ADA
DIA_LOSA.ADA
DIA R02A.ADA
DIA_R02D.ADA
DIA_R04B.ADA
DIA_WO01A ADA
DIA W02B.ADA
DIA_WO04A ADA
DIA_W04D.ADA
DIA WO05C.ADA
DIA WO08A ADA
DIA_W11A ADA
DIA_W13B.ADA
DIA W15A ADA
DIA_W16A.ADA
DIA_W18B.ADA
ELABL.A
ENUM 102.A
FILTER.A
FOLD.A
FORMAT .UNX
GAMM2.A
GLOBAL.CLOCK

DIA E03D.ADA
DIA_E03G.ADA
DIA_E04A.ADA
DIA_E05A.ADA
DiA E06A.ADA
DIA_E08A.ADA
DIA_E10A.ADA
DIA E12B.ADA
DIA_E12E.ADA
DIA_E15A.ADA
DIA_E17A.ADA
DIA L02A.ADA
DIA_L02D.ADA
DIA_L03C.ADA
DIA_L05B.ADA
DIA R02B.ADA
DIA_R03A.ADA
DIA_RO5A.ADA
DIA_W01B.ADA
DIA W02C.ADA
DIA_W04B.ADA
DIA_WO05A.ADA
DIA WO06A.ADA
DIA W09A .ADA
DIA_W12A ADA
DIA_W14A.ADA
DIA W15B.ADA
DIA_W17A ADA
D.ABORT.A
ELAB2.A
ENUM I03.A
FIRTH.A
FORMAT.ADA
FUNCEXCP.A

GEN MATH.ADA

GLOBAL.CPU

169

GLOBAL.SIZ
INCLUDE.COM
INITTIME.SIZ
INT_0.A

INT 3.A
INT6.A
INT9.A
IOTEST3.A

10 80B.A
I0.MEM.A
I0.SCAN.A

10 SCANS5.A
KALMAN.A
KERNEL11.A
KERNEL14.A
KERNEL17.A
KERNEL2.A
KERNEL22.A
KERNEL3.A
KERNEL6.A
KERNEL9.A
LIB.COM
LIB02.ADA
LIBO3A.ADA
LIB03.2.ADA
LIBO4_A1.ADA
LIB04 A4.ADA
LIB04_B2.ADA
LIB04_B5.ADA
L1B05.COM
LIBO7.COM
LIBO8B.ADA
LIBOSE.ADA
LIBO8H.ADA
LIBO8K1.ADA
LIB08K4.ADA

Tape Description

HANSON.A

INITTIME.CLOCK

INITTIME. TXT
INT_1.A

INT 4.A
INT_7.A
IOTESTL.A
IOTEST4.A
10 COPY.A
I0_PAT.A
I0_SCAN3.A
10 UNIF1.A
KERNEL1.A
KERNEL12.A
KERNEL15.A
KERNEL18.A
KERNEL20.A
KERNEL23.A
KERNEL4.A
KERNEL7.A
LABEL.A
LIBO1.ADA
LIB02.COM
LIB0O3B2.ADA
LiIB03.B1.ADA
LIB04.A2.ADA
LIB0O4 A5.ADA
LIB04.B3.ADA
LIB04.C.ADA
L1B06.COM
LIB08.COM
LIBO8C.ADA
LIBO8F.ADA
LIB08I.ADA
LIBO8K2.ADA
LIBO8L1.ADA

INCLUDE.ADA
INITTIME.CPU
INST.A
INT.2.A

INT 5.A
INT_8.A
IOTEST2.A
10 80A.A

IO INTER.A
IO_.RECUR.A
I0.SCAN4.A
10 .UNIF2.A
KERNEL10.A
KERNEL13.A
KERNEL16.A
KERNEL19.A
KERNEL21.A
KERNEL24.A
KERNELS.A
KERNELS.A
LF.SSA
LIB0O1.COM
LIB03.COM
LIB03 1.ADA
LIB04.COM
LIB04_A3.ADA
LIB0O4 B1.ADA
LIB04_B4.ADA
LIB05.ADA
LIBO7.ADA
LIBOBA.ADA
LIBOS8D.ADA
LIBO8G.ADA
LIBO8K0.ADA
LIBO8K3.ADA
LIBO8L2.ADA

170

LiIBO8L3.ADA
LIBO8BM2.ADA
LIB09.ADA
LIB10A.ADA
LIB11.COM
LIB13.COM
LIB14P.COM
LiIB14P2.ADA
LIB14P5.ADA
LIB14P8.ADA
LIB14S1A.ADA
L1B1452.COM
LIB145S2C.ADA
LIB16.ADA
LIB17.COM
LIB19.ADA
LOOPOQ.A
LOOPI1.A
LOOP14.A
LOOP17.A
LOOP4A A
LOOP5.A
LOOP8.A
MATH.DEC

MATH_DEPENDENT.DEC

MEDIAN.ADA

Tape Description

LIB0O8L4.ADA
LIBOBM3.ADA
LIB09.COM
LIB10B.ADA
LIB12.COM
LIB14.COM
LIB14P1.ADA
LIB14P3.ADA
LIB14P6.ADA
LIB14P9.ADA
LIB1451B.ADA
LIB14S2A.ADA
LIB15.ADA
LIB16.COM
LIB18.ADA
LIB19.COM
LOOP1.A
LOOP12.A
LOOP15.A
LOOP2.A
LOOP4B.A
LOOP6.A
LOOP9.A
MATH.PORT

LIBOSM1.ADA
LIBO8M4.ADA
LIB10.COM
LIB11.ADA
LIB13.ADA
LIB14D.COM
LIB14P10.ADA
LIB14P4.ADA
LIB14P7.ADA
L1B1451.COM
LIB14S1C.ADA
LIB1452B.ADA
LIB15.COM
LIB17.ADA
LIB18.COM
LIB TEMPLATE. TXT
LOOP10.A
LOOP13.A
LOOP16.A
LOOP3.A
LOOP4C.A
LOOP7.A
MATH.ADA
MATHTEST.ADA

MATH_DEPENDENT.PORT

MEDIAN.COM

MED DATA CONSTRUCTOR.ADA
MED_DATA_CONSTRUCTOR.UNX

NEURAL.A
PROPOSAL.STY
RAN16.ADA
RECLAIM.A
RUN_ACEC.COM
RUN_TST_PR.UNX
S0030T44.A
S0075T789.A

OPT.SSA
PURE.A
RAN32.ADA
REED.A
RUN.ACEC.UNX
S0000T14.A
S0045T59.A
S0090T04.A

MEDIAN.UNX

MED DATA _CONSTRUCTOR.COM
MSC.ADA
PREPARE_DBG.DIR.COM
QUEENS A

READ2.TEX

RTS.SSA
RUN_TEST_PROGRAMS.COM
S0015T29.A

S0060T74.A

S0105T19.A

171

Tape Description

S0120T34.A S0135T48.A S0149T61.A
S0162T67.A S0168T75.A S0176T82.A
50183T97.A S0198T12.A S0213T27.A
50228T41.A 50242T750.A S0251T51.A
S0252752.A S0253T53.A S0254T57.A
S0258T72.A S0273T85.A S0286T00.A
S0301T15.A S0316T30.A S0331T45.A
S0346T53.A 50354T768.A S0369T78.A
S0379T93.A S0394T08.A S0409T23.A
S0424T38.A S0439T43.A S0444T47.A
S0448T49.A S0450T51.A S0452T66.A
S0467T78.A S0479T88.A S0489T99.A
S0500T12.A S0513T28.A S0529T42.A
S0543T57.A 50558T74.A S0575T89.A
S0590T97.A S0598T05.A S0606T12.A
S0613T15.A 50616T30.A S0631T44.A
S0645T51.A 50652T66.A S0667T81.A
50682T786.A 50686 T86.A S0687T01.A
$0702T16.A S0717T20.A S0721T23.A
S0724T40.A S0741T41.A S0744T46.A
S0747T47.A S0748T50.A S0751T57.A
S0758T60.A S0761T63.A S0764T78.A
S0779T88.A S0789T98.A S0799T05.A
S0806T11.A SA8TEST.A SETUP DBG.COM
SETUP_TEST-PROGRAMS.COM SIMULATE.A
SIZE.ADA SIZE.DUMMY SIZE.VAX
SLICE.A SORT.A SPACE0.ADA
SPACEI.ADA SPACER.ADA SPACES.ADA
SSA.ADA SSA.TXT SSEARCH.A
SSEARCH2.A STARTIME.CLOCK STARTIME.CPU
STARTIME.SIZ STARTIME.TXT STOPTIMEOQ.CLOCK

STOPTIMEO.CPU
STOPTIME2.CLOCK

STOPTIMEO.SIZ
STOPTIME2.CPU

STOPTIMEO. TXT
STOPTIME2.51Z

STOPTIME2. TXT STYLE.SSA SYSNAMES. TXT
SLIBA TAK.A TASK1.A
TASK10.A TASK11.A TASK12.A

172

TASK13.A
TASK16.A
TASK19.A
TASK21.A
TASK24.A
TASK27.A
TASK3.A

TASK32.A
TASK35.A
TASK38.A
TASK40.A
TASK43.A
TASK46.A
TASK49.A
TASK51.A
TASK54.A
TASK57.A
TASK6.A

TASKS8.A

TASKSYS2.A
TESTCAL1.ADA
TIME.DUMMY
USER2.TEX

WHET2.A

X0721T23.A

Tape Description

TASK14.A
TASK17.A
TASK2.A
TASK22.A
TASK25.A
TASK28.A
TASK30.A
TASK33.A
TASK36.A
TASK39.A
TASK41.A
TASK44.A
TASK47.A
TASK5.A
TASK52.A
TASKS55.A
TASK58.A
TASK60.A
TASK9.A
TECH.A
TESTCAL2.ADA
TIME.VAX
VDD2.TEX
WHET3.A
X0747T47.A

TASK15.A
TASK18.A
TASK20.A
TASK23.A
TASK26.A
TASK29.A
TASK31.A
TASK34.A
TASK37.A
TASK4.A

TASK42.A
TASK45.A
TASK48.A
TASK50.A
TASK53.A
TASK56.A
TASK59.A
TASK7.A

TASKSYS.A
TEMPLATE.DIA

TIME.ADA
TRIE.A
WHET1.A
WHET4.A

173

5.4 Appendix IV, QUARANTINED TEST PROBLEMS

This appendix contains a list of test problems which fail on some systems for various reasons,
and a list of test problems which fail for system dependent reasons.

174

Problem | Number of ||
Name Systems Failing
[ASTAR 1
ACKER1
ACKER2
ACTIVATION1
ACTIVATION2
ALIASL
ALIAS2
ALIAS3
ALIAS4
ALIASS
ALIASS5X
ALIAS6
ALIAS6X
ALIAS7
ALIAS7X
ALIASS
ALIAS8X
ALIAS9
ALIAS10
ALIAS11
ALIAS12
ALIAS13
ALIAS14
ALIAS15
ALIAS16
ASYNC1
ASYNC3
ASYNC5
AVL_0
AVL_1
AVL 2
AVL_3
AVL_4
AVL.5
AVL 6
AVL.7

NN DD N N N N NN I =W W W W ke et e b bt b b el ek e e e ed N = = N DN

175

Problem | Number of
| Name Systeins Failing
AVLS |2 -
AVL9
AVL.10
AVL_11

BSORT1
BSORT2

CAT1
CAT2
CAT3

Ciol
Cl02
Cio3
ClO4
ClOs
ClO6
Clo7
ClOo8
Clo9
Clo10
Clo11
Clo12
Cio13
Cl014

CLAIMO1
CLAIMO2
CLAIMO3
CLAIMO4
CLAIMOS
CLAIMO06
CLAIMO7
CLAIMOS8
CLAIMO9
CLAIM10

'-bl\)woowwwwwwHHHHHHHHHHHHHHHHHt—lv—lMl\)MM

|
|
|
|
|

176

"Problem | Number of
Name Systems Failing

ClAMIL |3
CLAIM12 | 4
CLAIMI3 | 4
CLAIM14 | 3
CLAIMI15 |3
CLAIM16 |3
CLAIMI7 |2
CLAIM18 |3
CLAIM19 |3
CLAIM20 |2
CLAIM21 |2
CLAIM22 |2
CLAIM23 |2
CLAIM24 |3
CLAIM25 |2
CLAIM26 | 1
CLAIM27 |3
CLAIM28 |2
CLAIM29 |2
CLAIM30 |2
CLAIM31 |1
CLAIM32 |1
CLAIM33 |1
CLAIM34 |2
CLAIM35 |2
CLAIM36 | 4
CLAIM37 | 4
CLAIM38 |3
CLAIM39 |1
CLAIM40 |1
CLAIM4L |2
CLAIM42 |1
CLAIMA43 | 1
CLAIM44 | 1
CLAIM45 |2
CLAIM46 |2
CLAIM47 |2

177

Prolﬂem Number of
| Name | Systems Failing
| COMMON 2

COMPLEX_RECORDO1
COMPLEX_RECORDO2
COMPLEX RECORDO3
COMPLEX_RECORDO04
COMPLEX_RECORDOS
COMPLEX RECORDO06
COMPLEX RECORDO7
COMPLEX_RECORDO8
COMPLEX_RECORD09
CONSISTENTT
CONSISTENT?2
CONSISTENT3
CONSISTENT4
CONSISTENTS
CONSISTENT6
CONSISTENT?

CRCO
CRC1
CRC2
CRC3
CRC4

D LIBRARY 1
D_LIBRARY .2
D_LIBRARY.3
D LIBRARY §
D_LIBRARY .6
D_LIBRARY 7
D_LIBRARY .8
DEAD
DELAY1
DELAY2
DELAY3

DELAY ABORT1
DELAY_ZEROO
DELAY_ZERO6X

bt NP == NN RN RN W W WNR WIE e e e pd e a WWRNDNWRNDNDN

178

Problem
Name

Number of

Systems Failing

DES1
DES2
DES3
DES4
DES4A
DESH
DES5A
DES6
DES6A
DES7
DES7A

ELAB1
ELAB2
ELAB3
ELAB4
ELABS
ELAB6
ELAB7
ELABS
ELAB9
ELAB10
ENUM_IO8
ENUM_IO9
W
FOLD_-MOD

FUNCEXCP |

| IDIOMS
INSTT
INST2
INST3
INST4
INSTS

INVAR

T 1
N b b b pmd b N = NI ND N b bt pd el et b b b b b b= D W W N W = = = W

179

[Problem | Number of
Name Systems Failing

100 1
101
102 1
103 1
04 1
105 1
106 1
107 2
108 2
109 2
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

10.80.20.5
10 80 20 6
10.80.20_7
10.80-20_8
10.80.209
10 80 20 10

10 COPY1
10.COPY2
10.COPY3
10.COPY4
IOINTER1 |
I0 INTER2 |
I0.INTER3 |

2
1
1
1
1
1
1
1
1
1
1
1
1
1023 1
1
1
1
1
1
1
1
1
1
1
1
1
1

180

[Problem
Name

Number of

Systems Failing

I0_.MEM2
0 MEM3

IO.MEM1]

1

10 PATTERN1
IO_.PATTERN2
IO_PATTERNS3
10 PATTERN4
I0_.PATTERNS
IO_.PATTERNG
IO_PATTERN?7
10 PATTERNS

10 RECUR1
10 RECUR2
I0O_RECUR3

10_SCAN1
I0_SCAN2
10 SCAN2X
10 SCAN3
10.SCAN4
I0_SCAN5
10.SCANG
I0_SCAN7
I0_SCANS

I0_UNIF1
I0.UNIF2
IO UNIF3
I0.UNIF4
I0_UNIF5
I0_UNIF6

LOOPO
LOOP1

LOOP4A
LOOP4B
LOOP4C
LOOPS

LOOP10

IQSORT |

H.—A.—l.—l.—a.—n._nv._;'\
i i
1

NN RN NN N = = et et b e ek pod ok | b ot | el et ek e b et ek ek | et

|
!
|
l
|
I
|
|
i

t
l

181

Problem

Number of

Systems Failing |

LOOP17

1

MERGE1
MERGE2

PUZZLE

QSORT1
QSORT2

RECLAIM COLLECTION_CONSTRAINED
RECLAIM_COLLECTION_.UNCONSTRAINED
RECLAIM_GLOBAL_HEAP_CONSTRAINED
RECLAIM GLOBAL HEAP UNCONSTRAINED

REED_SOLOMON 0
REED.SOLOMON.1
REED_SOLOMON_2
REED_SOLOMON_3
REED SOLOMON 4

S LIBRARY 1
S LIBRARY 2
S_LIBRARY3
S_LIBRARY.5
S LIBRARY 6
S_LIBRARY_7
S_LIBRARY._8

SEARCH

SHELLL
SHELL2
SIEVE

Pt et | ek |t et N = b et = RO N N N O = N NDY et bt | el | b b |

|
|

SLICE1
SLICE2
SLICE3
SLICE4
SLICES
SLICE®
SLICE?
SLICES

Pd et ek ek ek ok e e | e

182

Problem
Name

Number of;~
Systems Failing

SS60 .. ss74

$5162 .. ss167

55213 .. 55227

55228 .. ss241

S$S242 .. ss250

$5250

55253

55254 .. ss257

55316 .. ss330

§5331 .. ss345

S$S346 .. ss353

155369 .. 55378
SS458 .. ss466

$S500 .. ss512 |

5S537

| SS513 .. 55528

SS539

i
|
|

|
f
|
{
|
i

SS652 .. ss666

55682 .. ss686

SS687 .. ss701

SS702 .. ss716

SS717 .. ss720

$S721

$5722

55741

SS764 .. ss780

ST RIS T ST RN E o S TR S e e e e R S e R e e
‘ i i Vg ‘ (
' | l

183

| Problem T Number of
Name Systems Failing

TASK1
TASK2
TASK4
TASKS
TASK6
TASK7
TASKS8
TASK9
TASK25
TASKZS
TASK30
TASK31
TASK32
TASK35
TASK35_DELTA
TASK37A
TASK378B
TASK40
TASK44A
TASK44B
TASKA45A
TASK45B
TASK46
TASK46X
TASK47
TASK49
TASK50
TASK51
TASKS52
TASKS53
TASK54_MOD
TASK55 MOD
TASK56
TASKS57
TASK58
TASK59
TASK60

i—‘NHMMwwNMMI\JMHNNwMNMHHMHMHH.—!.—!HHHMMHHHH

184

‘Problem

Name

TASK.NUM 1

TASK NUM 5
TASK NUM 10
TASK_NUM_15
TASK_.NUM_20
TASK_.NUM_25
TASK_NUM_30
TASK2_.NUM_1
TASK2_.NUM_5
TASK2 NUM 10
TASK2_.NUM_15
TASK2_NUM_20
TASK2_NUM_25
TASK2 NUM 30

 Number of
Systems Failiugr

TRIE1
TRIE2

UNREACH

NRIN DN NN DD DNDNDNONNDNDWOWNDD WD

185

This part of Appendix IV contains a list of test problems which have been observed to fail

on some systems for system dependent reasons.

Problem
Name

Number of

Systems Failing

ASYNC2
ASYNC4

4

AUTO

BMT

DELAY4
DELAYS

DELAY6

DELAY7

DELAYS

DELAY9
DELAY10
DELAY11
DELAY12
DELAY13
DELAY14
DELAY_ABORT2
DELAY ZERO1
DELAY_ZERO2
DELAY_ZERO3
DELAY_ZERO4
DELAY ZEROS
DELAY.ZEROS6

1

ENUM.IO1
ENUM.IO2
ENUM.IO3
ENUM 104
ENUM_IOS
ENUM_IO6
ENUM 107

FORWARD_EULER1
FORWARD EULER2

HEAPIFY

o e el e e L i e aia R OY

186

| Problem
Naie

‘Number of
Systems Failing

INT_0
INT.1
INT 2
INT.3
INT_4
INT 5
INT_6
INT_7
INT_8
INT 9

1024
1025
1026
1027
1028
1029
1030

 10.80-20_1
10.80.20.2
10 80 20 3
10.80.20_4
1080205
10.80.20_6
10 80.20 7
10.80.20_8
10.80.209
10 80 20 10

10_SCAN11
10 SCAN12
I0.SCAN13
10.SCAN14
10 SCAN15
10.SCAN16
I0_.SCAN17
10_.SCAN18
KALMAN

g

' KERNELI .. kernel24 [

N I S I e] e e i i i el Ll i i ad aat a a

|

!

I

!

!
== = —

187

Problom
Name

Number of

Systems Failing |

LOOP7
LOOPS8

LU

"NEURAL

"RUNGE

SIMULATE_BMBAT
SIMULATE EMRPM
SIMULATE HMPROTO
SIMULATE_QMPITCH
SIMULATE_RCWFRDET
SIMULATE.UMNAV
SIMULATE_KMDUMP
SIMULATE_RMKEYING

5SSO .. ss14

SS15 .. ss29

SS30 .. ss44

5545 .. ss59

$5258 .. 55272

$5273 .. 55285

55286 .. ss300

SS301 .. ss315

S$S394 .. ss408
SS409 .. ss423
$S424 .. ss438
55439 .. ss443
SS558 .. ss574

l-l‘r—l}!-—lgl-—ijl—l.‘—lHHH!—'HHHMI\)NI\JMNI\)MH—‘H‘I—‘HH

188

Problem
Name

| Number of |

Systems Failing

55723

$5724 MOD .. SS740.MOD

SS747

55806 .. ss811

TARGET

TASK48

WHET1
WHET?2
WHET3

iv
IR N N N | gt | bt | O] =] | e | |t | et

189

5.5 Appendix V, ACEC KEYWORD INDEX -1

This appendix contains a list of primary purposes (with LRM references) and their associated
test problems, as well as secondary, and incidental purposes, and comparison tests.

access.operations 3.8.2
Primary : 88154, 88155, 538256, s8257, 53648, 85746 (88744..88745),
ss748, ss805
Secondary : reclaim_collection_constrained,

reclaim_collection_unconstrained,
reclaim_global_heap_constrained,
reclaim_global_heap_unconstrained, ssl161, 88162, ss163,
8164, 88165, 88166, 88167, 88739_mod, triel, trie2

application.ai 1.1.2
Primary : a_star, neural
application.avionics 1.1.2
Primary 1 arti_asum, arti_atan2, arti_cos, arti_fmod,

arti_ifpm_control, arti_ifpm_init, arti_ifpm_io,
arti_ifpm_rotors, arti_nairini, arti_nscni, arti_nutmini,
arti_sin, ew, forward_eulerl, forward_euler2

application.~vl_tree 1.1.2
Primary : avl_O, avl_1, avl_2, avl_3, avl_4, avl_5, avl_6, avl_7,
avl_8, avl_9, avl_ 10, avli_11
application.cyclic_redundancy_check 1.1.2
Primary v crcO0, crcl, crc2, crc3, crcd
application.data_encryption_standard 1.1.2
Primary : desl, des2, des3, des4, des4a, desS5, desSa, des6, desba,
des7, des7a
application.error_correcting_code 1.1.2
Primary : reaed_solomon_0O, reed_solomon_1, reed_solomon_2,
reed_solomon_3, reed_solomon_4
application.filter 1.1.2
Primary : filter1l, filterli, filter2, filter2i, filter3, filter4
application.integration 1.1.2
Primary : 88398, 88402
application.kalman_filter 1.1.2
Primary : kalman
application.lag_filter 1.1.2
Primary : 88397, ss401
application.polynomial.coding_style 1.1.2
Primary : 88120, ss121, ss122, 88123

190

application.simulation 1.1.2

Primary : simulate_bmbat, simulate_emrpm, simulate_hmproto,
simulate_gmpitch, simulate_rcwfrdet, simulate_umnav,
simulate_kmdump, simulate_rmkeying

application.symmetric_deadzone 1.1.2

Primary : 88399, 58403

application.symmetric_limiter 1.1.2
Primary . 88400, ss404

application.trie 1.1.2
Primary : triel, trie2

array.aggregates 4.3.1
Primary : 88775, 88778
Secondary : ss8764, 88765, ss766, 58767, 88768

array.constraints 3.6.1
Primary : 88596 (s8597)

array.dynamic 3.6
Primary : 88419 (ss8420)

array.operations 3.6.2

Primary : catl, cat2, cat3, ssl7, ssi8, ssi9, ss57, ss877, 8878, 8879,
ss80, ss81, 88301, 88645, 88646, 88647, 88758, 88759, 88760,
ss761, 88762, 88763, 88774, 88776, 88777

Secondary : claimi18, claimi19, claim20, claim21, claim22, ss853, ss54,
ssb5, ssb8, ss75, ss76, ss120, ss168, ss169, 88170, 88172,
8s173, ss8174, ss175, 88192, ss8193, ss194, 88235, 88243,
ss246, ss258, ss259, ss284, ss8285, ss8309, 58388, s8429,
ss430, ss511, ss512, s8s518, 88519, 88520, 88553, 88554

Incidental : ss405, ss406, ss409, ss410, ss41l, ss419, ss420, 88428,

ss432, ss433, ss434, ss435, ss436, ss437, ss438, ss8439,
ss442, ss443, ss477, s8s508, 88509, ss8516, ss8517, 88535,
ss8636, ss541, ss542, s88542x, s8545, 38557, 88562, 88596,
88597, 88648, 88652, 838653, ss8654, 83655, 88656, 88657,
ss658, 838659, ss660, ss661, 88662, 83663, 88664, 88665,
ss666, ss667, ss668, ss669, ss8670, 88671, 88672, 88673,
8s674, 8s675, ss8676, 88677, 88678, 58679, ss680, 88681,
ss687, ss688, s3689, 338690, 88691, 88692, 88693, 88694,
88695, 88696, s8697, 88698, 58699, 88700, 88701, 88702,
ss703, ss704, ss705, 88706, 88707, 88708, ss709, ss710,
88711, 88712, 88713, ss714, ss715, ss716, ss731_mod,
88732_mod, ss8734_mod, ss735_mod, 88749, 88750

191

boolean.arrays.packed 4.5

Primary : 88337, 88338, 88339, 88340, 88341, 88342, 88343, 88344,
88345, ss347, ss348, 58349, 88524, 88525, 88526, 88764,
88765, 88766, ss767, ss768 (ss769..s88773)
Incidental : ss346, ss353, ss500, ss501, ss502, 88506
boolean.arrays.unpacked 4.5
Primary : s8326, 88327, ss328, ss329, ss330, ss331, ss332, 88333,
88334, 83336, 88351, 88352
Incidental : 88346, 38353, 88486
boolean.expressions 4.5
Primary : 8872, 88101, ss177, ss8228, 88229, s8486, 58487, 58488, 88489,
88492, 88499, 88686x, 38686y
Secondary : ss73, ss74, ss176, ss227, ss230, 88231, ss232, 88280, 88326,
88327, s8329, ss8330, ss8331, ss332, 88333, 88334, 88335,
58336, ss337, ss338, 55339, ss340, ss341, ss342, 88343,
ss344, ss8345, 55346, 88347, ss348, ss8349, 88350, 88351,
58352, ss353, ss500, ss8501, 88502
Incidental : ss145, ss146, ss147, ss314, ss315, ss8316, 88317, 88318,

boolean.record

88323, 88464, 88598, 88599, 88602, 88604, 88805
3.5.3

Primary : 88682, ss683, ss684, s8s685, 88717, 88718, 88719, 88720
classical.ackermann’s 1.1.2

Primary : ackeri, acker2
classical.cube_placing 1.1.2

Primary : puzzle
classical.dining_philosophers 1.1.2

Primary : task7, task8, task9, taskl0, task25
classical.dhrystone 1.1.2

Primary : dhrys1i_mod, dhrys2_mod, dhrys3_mod
classical.eight_queens 1.1.2

Primary : queens_mod
classical.GAMM_measure 1.1.2

Primary : gamm, gamm2
classical.numerical.comp_fam_arch(CFA) 1.1.2

Primary : auto, bmt, heapify, lu, runge, target
classical.numerical.knuth_loops 1.1.2

Primary : loop0, loopl, loop2, loop3, loop4a, loop4b, loopdc, loopS5,

*

loop6, loop7, loop8, loop?, loopl0, loopil, loopl2, loopl3,
loopi4, loopi5, loopl6, loopl7

192

classical.numerical.livermore_loops 1.1.2
Primary : kernell, kernel2, kernel3, kernel4, kernelS, kernel§,
kernel7, kernel8, kernel9, kerneliO, kernelil, kerneli?2,
kerneli3, kernell4, kerneli5, kernelié (kernelié_goto),
kernell7, kernelil8, kernell9, kernel20, kernel2l, kernel22,
kernel23, kernel24

classical.prime_number 1.1.2
Primary : sieve
classical.search 1.1.2
Primary : search, ssearch, ssearch2
classical.sort 1.1.2
Primary : bsortl, bsort2, cigsort, igsort, mergel, merge2, gsortl,
gsort2, shelll, shell2
classical .whetstone 1.1.2
Primary : whetl, whet2, whet3, whet4
consistency_check.timing_loop
Primary : consistentl, consistent?, consistent3, consistent4,

consistentS5, consistent6, consistent7, 88769, ss8770, 88771,
88772, 88773

conversion.fixed 3.5.10
Primary : 88107, 58108, 88466, 88467, 88721, 88722, 18723
conversion.float 4.6
Primary : 882, ss2_modl (ss2_mod2), ss13, ss289, 88290
Secondary : ss283
conversion.integer 4.6
Primary : 888, ss8_mod, ssl12, ss233, 85234, ss8300, 85468
Secondary : 88277, 88282, 88303
conversion.null 4.6
Primary : 85241
conversion.packed_to_unpacked 4.6
Primary : 88335, 88346, s8353
conversion.unchecked_conversion 13.10.2
Primary : 88259 (88258), 88500, 88501, 58502, 88506
conversion.unpacked_to_packed 4.6
Primary : 88350

193

delay.problems 9.6
Primary : delayl, delay2, delay3, delay4, delay5, delay6, delay7,
delay8, delay9, delay10, delayilil, delayl2, delayi3, delayi4,
delay_zeroO, delay_zerol, delay_zero2, delay_zero3,
delay_zero4, delay_zero5, delay_zero6 (delay_zeroéx),
delay_zero7, delay_zero8, ss455, s8s458, s8s459
Secondary : async3, delay_aborti, delay_abort2
exception.handling 11.4
Primary : funcexcp, ss379, ss8380, ss381, 88382, 88383, 58384, 88527,
88528
Secondary : ss543
Incidental : cat3, claiml2, claim13, claimi4, claimil5, claimi19, claim2i,
claim22, claim38, claim46, claim47, 58598, 88599, 88602,
88604, ss638, 88741

exception.numeric_error 11.1
Primary : 88313, 58369

exception.raise 11.3
Primary : 88117, 88311, ss8312
Secondary : cat3, claimi3, ss8755, 88757

expression.abs 4.5.6
Primary : 8829, ss30, ss266, ss5293

Secondary : ss368
Incidental : ss431

expression.attributes 4.1
Primary : 88246

expression.catenation 4.5.3
Primary : 85113

expression.exponentiating 4.5
Primary : 88191

Secondary : ss15, ss16, ss21, ssb0, 8851, 8865, ss66, 88188, s8213,
ss216, ss216_mod, ss8217, ss8219, ss219_mod, 88279, 88291,
s8304, 88305, 53306, 53307, 89643x

expression.parenthesis 4.5

Primary : 838389, 88390, s8391, ss392, 58393, 55394, 55395, 88396
fixed.operations 3.5.10

Primary : 88109, 88110, 35460, s8461, 85462, 85463, 85464, 58465

194

float.operations

Primary

Secondary

Incidental :

3.5.8

: 881, ss3, ss4, ssb, ss6, 83211, 58286, 88287, 88288, 88302,

3308, ss315, 88324, 33591 (8s592..88594), 38643x

: 8820, 8821, 8822, 8823, 8824, 8825, 8859, 8860, 8861, 8862,

ss63, ss64, ss65, 8866, ss871, 85134, ss135, 88136, 88150,
838216, s8s8216_mod, 58219, 88219_mod, 88220, 88256, 88257,

88293,
ss314,
88392,
ss581,
ss606,
88783,
88791,

ss67, ss68, ss69, ss70, ss8120, 88121, 88122, 88123, 88141,

88142,
88234,
$8307,
85404,
ss418,
s8442,
ssgbil,
88532,
85586,
58628,
58647,
88761,

ss294,
88316,
s8552,
ss582,
88607,
ss784,
88792,

88295,
88317,
88575,
88583,
8s609,
88785,
88793,

88296,
ss318,
ss576,
ss8585,
88643,
ss786,
ss794,

88143, ss8154, ss185,

88262,
88397,
88406,
ss431,
§8443,
88512,
88533,
88621,
88629,
ss649,
s8762,

88263,
88398,
88407,
ss432,
8s444,
88513,
88534,
88622,
ss8630,
88650,
ss763

88291,
88399,
88413,
$s8433,
55448,
ss514,
88535,
88623,
ss631,
s8753,

88297,
88323,
ssb77,
ss8588,
s8779,
88787,
88795,

88210,
88292,
88400,
ss414,
88434,
8s450,
ss515,
88536,
88624,
88632,
ss754,

88298,
88389,
88578,
58589,
ss780,
88788,
88796,

88218,
88304,
88401,
88415,
88435,
ss454,
§8529,
88547,
88625,
88633,
88758,

88299,
88390,
88579,
s8590,
ss781,
ss789,
88797,

88226,
88305,
88402,
88416,
88436,
88467,
88530,
88548,
88626,
88645,
88759,

88301,
88391,
88580,
88595,
88782,
88790,
88798

88233,
88306,
88403,
88417,
88437,
88485,
ss8531,
8549,
88627,
88646,
88760,

generic.instanstiation 12.3
Primary : enum_iol, enum_io2, enum_io3, enum_io4, enum_io5, enum_io6,
enum_io7, enum_io8, enum_io9
generic.package 12.
Secondary : filter2, filter2i, ss806, ss807, ss808, ss809, ss810, ss811
generic.subprogram 12.
Primary : 88148, 858149 (88151), 83150, 8478, 88621, 88622, 858623,
88624, ss625, 55626, 58627, 58628, 58629, 88630, 88631
Secondary : filter1l, filterli
image
Primary
Secondary

Incidental :

3.5.5
: 88131
: claimi?
inst4, ss370

195

integer.bigint.operations 3.5.5

Primary : 88270, ss271, 88272, 88273, 88274, 88275, 88276, 88277,
88278, 88280, 55282, s8283, 55284
integer .MOD 3.5.5
Primary : 88102
Secondary : ss8199
Incidental : 88446
integer.operations 3.5.5
Primary : 8s7, ss9, ss10, ssl1, ss46, 88201, s8202, 88203, 88268,

88269, ss5281, ss561, 88729_mod, 88744, ss745

Secondary : 8840, ss4l, ss41_mod, ss842, ss42_mod, 8843, ss44, ss845, 8847,
ss48, ss49, ss50, ss51, ss52, ss56, ss137, 8si89, 88195,
88196, 85197, 88198, s8217, 88221, 88393, 88394, 88395,
88396, 88503, 88550, 88551, 88556, 88560, 88566, 88567,
8s568, s3569, 88570, ss571, s8572, 88573, 88574, 88584,
8s608, 83610, ss8611, 88753, 88754

Incidental : ss95_mod, 8s96_mod, s897_mod, ss898_mod, ss8102, ss8103, ssi17,
ss129, ss8130, ss131, ss138, ss139, ss140, ss8190, s8191,
88200, s8209, 88213, ss8214, ss5241, s8264, 88265, 88266,
88267, ss364, 88366, ss8367, s8369, 88372, 88373, 88374,
88375, ss384, ss385x, s3386, 88423, 88424, 88425, 88426,
ss427, ss428, ss429, 88430, s8s431, 88440, ss8441, 88445,
ss8446, ss447, ss449, ss451, ss466, ss468, 88469, 88470,
ss471, ss472, ss473, 88474, 58475, 88476, 88490, 88491,
88500, ss501, 88502, ss506, 88507, ssb11, 88512, 88558,
88559, 88563, ss564, 88565, ss612, ss8634, 88635, 88636,
83637, ss638, 83639, 8s640, ss651, ss652, s8s752, ss755,
ss756, ss757, ss774, 88775, 8s776, 88777, ss778

integer .REM 4.5.5

Primary : 88103

Secondary : ss8204

Incidental : 88276, 88362, 88363, 88447

interface.language.assembly 13.9
Primary : 88747

196

I0.direct 14.2

Primary : ioll, iol12, iol13, iol4, ioil5, iol6, io_80.20_1, i0.80_20_2,
i0.80_20_3, 10.80_20_4, i0_80_20_5, i0_80_20_6, i0_80_20_7,
io_80_20.8, i0_80_20_9, i0_80_20_10, io_copy3, io_copy4,
io_inter2, io_inter3, io_patterni, io_pattern2, io_pattern3,
io_pattern4, io_patternS5, io_patterné, io_pattern7,
io_pattern8, io_recurl, io_recur2, io_recur3, io_scani,
io_scan2 (io_scan2x), io_scan3, io_scan4, io_scan5, io_scané,
io_scan7, io_scan8, io_scani3, io_scani4, io_scani$,
io_scan16, io_scanl?, io_scan18, io_unif1, io_unif2,
io_unif3, io_unif4, io_unif5, io_unifé

I0.sequential 14.2
Primary : 1017, 1018, iol9, i020, io021, io22, io23, io_copyl, io_copy2,
io_interl, io_scanll, io_scanl2
Secondary : io_inter2, io_inter3
I0.Text_I0 14.3
Primary : asyncl, async2, ciol, cio2, cio3, cio4, ciob, cio6, cio7,

cio8, cio9, ciol0, cioli, ciol2, ciol3, ciol4,
instl (inst2..inst5), io0, iol, io2, io3, io4, io5, io6, io07,
io8, io9, 1010, io24, i025, i026, 1027, io28, io29, 1030

Secondary : asyncé4, asyncb, claim23
Incidental : ss8537, ss8538, ss5539, s8540
10.Text 10.float_string 14.3.8
Primary : 88134, 88135, 85136
I0.Text_I0.integer_string 14.3.7
Primary : 88137, ss431
loop.exit 5.7
Primary : 88354, ss355, 88356, 85357

Secondary : ss182, ss183, ssi84, ss250, ss376, ss377, ss386, ss612
Incidental : ss406, s8427

197

loop.for
Primary

Secondary

Incidental :

loop.while
Primary
Secondary

Incidental :

5.5

88519, 88520, 88535, 88542x

: claim09, claimill, ssS57, ss80, ss81, ss8106, ss171, 88180,

58225, s8236, ss5237, 55238, 88239, 58240, ss387, 88409,
ss423, ss425, ss525, 88536, ss541, ssb42, ss651, ss749,
ss750, ss752, ss776
ss120, ss163, ss164, ss165, ss166, ss167, ss212, ss213,
88428, s8s431, ss5438, 88439, 88440, 88441, ss442, 88443,
88472, ss473, ss8477, 88490, 88491, ssb511, 88512, 88654,
88655, 83659, 88660, 88664, 83665, 83669, 88670, 88674,
88675, 88679, 83680, 88686x, 88686y, 588689, 88690, 88694,
88695, 88699, 85700, 88704, 887085, 88709, 88710, 88714,
88715, ss741

5.5

: 88209, s8426
: 85185

ss148, ss162, ss165, s8166, 558369, ss385, 858479, 85480,
53481, 53482

math_dep.adx 4.5
Primary : 838810
Secondary : ss807
math_dep.intexp 4.5
Primary : 88809
Secondary : ss806
math_dep.setexp 4.5
Primary : 88811
Secondary : ss808
math.function.arcsin 4.5
Primary : ss586
math.function.arctan 4.5
Primary : 8834, ss8299
Incidental : kalman, whetl, whet2, whet3, whet4
math.function.cos 4.5
Primary : 8828, 88295
Incidental : kalman, whetl, whet2, whet3, whet4
math.function.exp 4.5
Primary : ssi4, ss31, ss296
Incidental : 88308, whetl, whet2, whet3, whet4

: 8858, 88104, ss5105, 88181, 88422, 88424, 88516, 88517, 88518,

198

math.function.log

4.5

Primary : 8832, 88297
Secondary : ssl4
Incidental : 58308, wheti, whet2, whet3, whet4
math.function.sgn 4.5
Primary : 8835
Incidental : ss267, ss268, 88269, 83413, ss414, 58562
math.function.sin 4.5
Primary : 8827, s8294
Incidental : kalman, whetl, whet2, whet3, whet4d
math.function.sqrt 4.5
Primary : 8833, 88298
Incidental : kalman, whetl, whet2, whet3, whet4
optimization.algebraic_simplification 10.6
Primary : ss44, ss47, ss48, ss49, ss50, ssb1, ss61, ss62, ss63, ss64,
ss65, ss66, ss67, ss73, ss74, s8s218, 88220, 88221, 88319,
88320, ss8321, 88322, 388432 (88433), 88434, 88435, 88436,
88437, 88560 (s8s8561)
optimization.boolean_var_elim 10.6
Primary 1 88176 (s88177)
optimization.bounds_check 10.6
Primary : 88174, 88192, 85193, 355194, 853368
optimization.common_sub_expr_elim 10.6
Primary : alias2, alias6 (alias6x), alias10, aliasi4, common, csel,
cse2, cse3, cse4, cseb, csef, cse7, cse8, csed, csell,
purel (pure2), pure5 (pure6), ss75, ss76, ss172,
88210 (ss211), ss3406, ss428, ss508, ss509, ss530, 88533,
88553, 88554, 88643, 88644
optimization.constant_propagation 11.6
Primary : firthé (firthéx), ss316, ss317, 58529
optimization.data_flow 10.6
Primary : 88504, 58505, 88753 (s8757), 88754 (ss757), ss755 (88757),

optimization.dead
Primary

88756 (88757)
10.6

: alias3, alias7 (alias7x), aliasl1, aliasi5, dead, ss56, 8868,

8871, s8225, 88226, 83427, 83638, 88639, 38640, ss8641, 58642,
88649, 83650, 88651

199

optimization.folding 10.6

Primary : alias4, alias8 (alias8x), aliasl2, aliasi16, foldi, fold2,
fold3, fold4, fold5, fold6, fold7, fold8, fold_mod, ss4l,
ss41_mod, ss42, ss42_mod, ss55, ss60, ss70 (ss69), ssi85,
8s189 (ss190), ss216, ss216_mod, ss217, ss219, ss219_mod,
88227, s8230, ss231, 588232, 88239, 858285, 88303, 858304,
88305, 85306, 388314 (s88315), =8318, 88325, 88362, 88421,
ss532, ss537, ss538, 58539, s8540, ss556, ss558 (ssb59),
ssb561x, 88563, ss564, ss565, ss587 (ss8591..88594),
88588 (88591..38594), 58589 (88591..88594),
88590 (ss591..85594), 88595, 88806, 58807, 88808

Secondary : ss2, ss8, ssb4, ss83
optimization.inline 10.6

Primary : 88260, ss410 (ss411)
optimization. jump_tracing 10.6

Primary : 88182, ss8183, ss184, 88250, 38619, 88620
optimization.loop_flattening 10.6

Primary : 88405
optimization.loop_fusion 10.6

Primary 1 ss180 (ss181)
optimization.loop_induction 10.6

Primary : 88236, 88237, s8409
optimization.loop_interchange 10.6

Primary : 88750
optimization.loop_invariant 10.6

Primary : aliasl, alias5 (aliasSx), alias9, aliasi3, invar,

pure3 (pured4), pure? (pure8), ss212, s8222, ss8429, 88430,
ssb36, 58749, ss752

optimization.loop_.rotation 10.6
Primary : 88385 (ss8385x), ss386, ss387
optimization.loop_unrolling 10.6
Primary : 88238, 8s240, ss541, ss542 (ss542x)
Secondary : ss105
optimization.machine_idiom 10.6
Primary : idioms, ss40, ss43, ss4b5, ssb2, ssb9, ss173, ss196, ss197,

ss198, 88199, 88200, 88204, 88205 (s88206), 88207, 885208,
88214, 83215, 88323, s58385x, 83407, 85408, ss5503, 88555,
ss611

Secondary : ss7, ss29, 8s30, ssl1l15

200

optimization.merge_tests 10.6

Primary : ss175, 85178 (ss179), ss440 (ss441)
optimization.order_of_evaluation 10.6

Primary : 88413, ss414, ss415, ss8416, 585417, 58418, 88545, 88546,

s8547, ss548, ss549, ss550, ss551, 88552

optimization.redundant_code 10.6

Primary : 8195, ss261, ss8376, 88377

Secondary : ss93
optimization.register_allocation 10.6

Primary : 88235, 88262, 88263, 88264, 88265, 88307, 85388, 88412,

ss442, ss443, ss507, ss510, ssS1i1, 88512, ss531, s8534,
ss557, ss606, ss607, ss608, ss609, ss610, 88612
optimization.strength_reduction 10.6

Primary : ss15, ss16, ss188, ss5213 (88422), 88279, 88291, 58423 (s8424)

ss425, strength
Secondary : ss426

optimization.test_swapping 10.6
Primary : 58438, 85439
optimization.unreachable_code 10.6
Primary : 83543, ss751, unreach
package.overhead 8.
Primary : d_library_1, d_library_.2, d_library_3, d_library_5,

d_library_6, d_library_7, d_library_8, s_library_1,
s.library_2, s_library_3, s_library.5, s_library_6,
s_library_7, s_library._8, ss469, ss470, ss471, ss8472, 58473,
ss474, ss475, ss476, ss477, ss779, ss780, ss781, ss8782,
88783, ss8784, ss785, ss78%, ss787, ss788

parameters 3.4.1
Primary : 88419 (ss8420), ss584, ssb585
parameters.default 6.4.2
Primary : 85124, ss125, ss126
parameters.modes 6.2
Primary : ss138, ss139, ss140, ss145, ss146, ss147, ss378, 58562
parameters.passing 6.4
Primary : 88566, 88567, 88568, 88569, ss570, 88571, ss8572, 88573,

ss8574, ss575, ss576, ss577, ss578, 88579, ss580, s8s581,
58582, ss583

Secondary : ss8247, ss248, ss249, ss613, ss614, ss615, ss616, ss5617,
88618

201

pragma.numeric_error 11.1

Primary : 88444, ss445, ss446, s8s447, ss8448, 58449, 88450, 88451
pragma.pack 13.1
Primary : 8s156, ss157, ss158, ss159, 83160, ss161
pragma.suppress.discriminant_check 11.7
Primary : 88613, ss614, ss615, 88616, 88617, 88618
Secondary : ss8242
pragma.suppress.elaboration_check 11.7
Primary : elabi, elabl0, elab2, elab3, elab4, elab5, elab6, elab7,
elab8, elabd
pragma.suppress. index_check 11.7
Primary : 88563, ss854
pragma.suppress.range_check 11.7
Primary : firth7? (firth7x), ss117, ss168, ss169, 88170, 88171, 88363,
88364, 58365, 88366, 88367, 88372, 88373, 88374, 88375,
88757

Secondary : ss242, ss252, ss254, ss255, 88758, 88759, 88760, s8s761,
ss762, ss763

record.aggregates 4.3.1
Primary : firth3 (firth3x), ss116

record.assignment 3.7.4
Primary : firthl (firthix), sz100, ssli4

record.component.assignment 3.7
Primary : 8s21, 88115, ss244

Secondary : ssi56, ss157, ss158, ssi59, ss160, ss161, ss215, 8s724_mod,
88725_mod, ss8736_mod, ss737_mod, ss738_mod
Incidental : ss8407

record.discriminants 3.7.1
Primary : 88152, 88153, 53242, 55245, 88598 (88599), 88600 (88601),
88602, 88603, ss604, 88605
record.operations 3.7.4
Primary : complex_record0l, complex_record02, complex_record03,

complex_record04, complex_record05, complex_recordO6,
complex_record07, complex_record08, complex_record09,
firth2 (firth2y), firth2x, io_meml, io_mem2, io_mem3, slicel,
slice2, slice3, sliced4, slice5, slicef, slice7, slice8,
88513, ss8514, 88515
record.overhead 3.7.4

Primary : 88789, 88790, 88791, 85792, 88793, 88794, 85795, 88796,

88797, 88798

202

representation.attributes 13.7.2

Primary : 88730_mod, ss731_mod, ss732_mod, ss8734_mod, s8s735_mod,
8s736_mod, 8s737_mod, 8s738_mod, 8s8739_mod, 88740_mod
representation.pack.unpack 13.1
Primary : 88652, 88653, 33654, s3655, 88656, 886587, 88658,

scope.intermediate

Primary : 8896_mod, s8897_mod, s898_nod
scope.local 8.2
Primary : 8820, 8s895_mod
statement.block 5.6
Primary : 8822, s8s23, 8824, ss25, ss544
Secondary : claiml0, claimi2, claiml3, claimi16, claim38
statement.case 5.4
Primary : ss118, ss119
Secondary : ss133, ss325
Incidental : ss482, ss488
statement.goto 5.9
Primary : 8826
Secondary : kernell6_goto, ss261, s3385x, 88619, 88620
Incidental : claim09, claiml10, claimii, ss356
statement.if.coding_style 5.3
Primary : firth4 (firth4x), ss82, ss83, ss84, ss85, ss86, ss87, 8888,

88660, ss661, 58662, 83663, 88664, 88665, 88666,
88668, 88669, 58670, BB671, 88672, 88673, 88674,
ss676, ss677, ss678, ss679, ss680, ss681, ss687,
58689, ss690, ss691, ss692, 88693, 88694, 88695,
8s697, ss698, ss699, ss700, ss701, ss8702, ss703,
ss705, ss706, ss707, ss708, ss709, ss710, 88711,
88713, 838714, 88715, 88716, 88724_mod, s8725_mod
8.3

ss89, ss890, ss91, s892, ss94, 558186, 85187, 8§58223, 88224,
88490, s3491, 535494 (s3495), 58496, 55497, 55498 (85499)

203

statement.if.condition §.3
Primary : 8893, ss5129, ss144, 88179, 88206, 88292, 88441, 88559
Secondary : consistentl, consistent2, consistent3, consistent4,
consistent5, consistent6, consistent7, 88207, 88208, 88324,
88328, ss421, ss438, s8439, 88440, ss8504, 88505, 88507,
ss508, ss8509, ss510, ss558, ss561, ss644, 88649, 88650,
ss686x, ss686y, ss751, ss800, ss801, ss802
Incidental : ss128, ss132, ss176, ssi177, ssl178, ss8205, ss214, ss8227,
§8228, 88229, 388230, s8231, 88232, 88262, 88263, 88264,
ss311, ss312, ss313, ss8319, s8320, ss8321, 88322, 88339,
s8355, ss356, ss8385x, ss398, 88399, 88400, 88402, 88403,
ss8404, ss409, ss417, ss418, ss431, ss479, 88480, ss48l,
88511, 88512, 85526, 88527, 858528, 88537, 88538, 88539,
88540, ss754
statement.null 5.1
Primary : label, ss0, ss106, ss804
Secondary : ss544
Incidental : ss8543

statement.overhead 5.2
Primary : 88634, 88635, s8636, 88637
storage.reclamation 4.8
Primary : claimO1, claim02, claim03, claim04, claim05, claim06,

claim07, claim08, claim09, claimiO, claimil, claimi12,
claim13, claimi4, claimi5, claimi16, claimi7, claimi8,
claim19, claim20, claim2i, claim22, claim23, claim24,
claim25, claim26, claim27, claim28, claim29, claim30,
claim31, claim32, claim33, claim34, claim35, claim36,
claim37, claim38, claim39, claim40, claim4l, claim4?2,
claim43, claim44, claim45, claim46, claim47,
reclaim_collection_constrained,
reclaim_collection_unconstrained,
reclaim_global_heap_constrained,
reclaim_global_heap_unconstrained, ss162, ss163, ss164,
ss165, s8166, 83167, ss8741

204

subprogram.external 6.4

Primary

Secondary

Incidental :

subprogram.inline
Primary
Secondary

subprogram.local
Primary

Secondary

Incidental :

: activationt, firthS (firthSv..firth5z), ss36, =837, ss38,

8839, 88632

: 88641, ss8642

88236, 88237, ss365, 88385, 88386, 88387, 88516, 88517,
88518, ss8519, ss8520, 88546, 88547, 88548, 88549, 88596,
88638, 85639, 88640, s8730_mod

6.3.2

: activation2, ss142 (ssi144), ss411, s8633
: claim40, claim41l, claim42, claim43, claim44, claim45,

claim46, claim47, ss8563, ss564, ss8565
6.4

: 88127, ssl141, ss143, s8247, 88248, 88249, 88258, 88358,

88359, 88360, 88370, 88483, 88484, 88485, 88521, 88522,
88523, tak

: claim01, claim02, claim03, claim04, claim0S5, claimO6,

claim07, claim08, claimi4, claimi5, claim24, 88260, 88596,
ss748

88236, 88237, ss8379, 88380, 88381, 88382, 88383, 88384,
88486, ss487, s8492, 88598, 88599, 88600, ss601, 88603,
83604, ss605

subprogram.nested 8.3

Primary : 88361

task.interrupt 13.5.1

Primary : int_O0, int_1, int_2, int_3, int_4, int_5, int_6, int_7,

int_8, int_9
task.language_feature_tests 9.

Primary : async3, async4, asyncS5, delay_abortl, delay_abort2, taskl,
task2, task3, task4, task5, task6, task1l, taskl2, taski13,
task14, tasklS, task16, taskl17, taski8, task19, task20,
task21, task22, task23, task24, task26, task27, task28,
task29, task30, task31l, task32, task33, task34, task34_delta,
task35, task35_delta, task36, task37a, task37b, task38,
task39, task40, task41l, task42, task43, task44a, task4db,
task45a, task45b, task46, task46x, task47, task48, task49,
task50, task51, task52, task53, task57, task58, task59,
task60

Secondary : claim34, claim35, claim36, claim37, ss740_mod

205

task.rendezvous 9.5
Primary : task_num_1, task_num_5, task_num_10, task_num_15,
task_num_20, task_num_25, task_num_30, task2_num_1,
task2_num_5, task2_num_10, task2_num_15, task2_num_20,
task2_num_25, task2_num_30

Secondary : claim28, claim29, claim30, claim31, claim32, claim33
task.storage_size 9.9

Primary : taskS4_mod, task55_mod, task5é
timing.calendar 9.6

Primary : 88453, ss454, ss456, 88457, 88799, 88800, 88801, 88802,

88803

timing.clock 9.6

Primary : 88452

Secondary : claim39
type.character.operations 3.5.85

Primary : 88479, ss480, ss481, 88482, 88493

Incidental : gs8486, 85487, 55488, 858489, 858492
type.enumeration.attributes 3.5.5

Primary : 88128 (ss129), ss130, ss251, ss252, ss253, 88254, 88255
type.enumeration.operations 3.5.5

Primary : 88132, ss133, 88309, 88310
type.named_number 3.2

Primary : 88267 (8s268..88269), 88726_mod, 88727_mod, 88728_mod

Secondary : ss483, ss484, ss587
Incidental : s8529, ss530, ss531, ss534
type.string.assignment 3.6.3
Primary : 8899, ss11i, ss112, ss151, ss243, 88371
Secondary : 88113, ss149, ss8370
withdrawn.tests
Primary : ai_create_delete_kb, ai_create_object, ai_load_kb_from_file,
ai_modify_object, ai_query, dhrysi, dhrys2, dhrys3, fold,
queens, 5895, ss96, 8597, ss98, 83686, 88724, 88725, 88726,
88727, 88728, ss729, ss730, 88731, 88732, ss734, 88735,
88736, 88737, 88738, 88739, 88740, taskb4, taskS5

206

5.6 Appendix VI, ACEC KEYWORD INDEX - 2

This appendix contains a list of test problems with their primary purposes (which may be for comparison

with other tests).

a_star
ackeril
acker2
activationi
activation2

ai_create_delete_kb

ai_create_object

ai_load_kb_from_file

ai_modify_object
ai_query
aliasl

alias2

alias3

alias4

alias$s

aliasSx

alias6

alias6x

alias?

alias7x

alias8

alias8x

alias9

aliasi10
aliasii
aliasl2
aliasi3
aliasi4
aliasib
aliasié
arti_asum
arti_atan2
arti_cos
arti_fmod
arti_ifpm_control
arti_ifpm_init
arti_ifpm_io
arti_ifpm_rotors
arti_nairini

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Comparison :
: optimization.

Primary

Comparison :
: optimization.

Primary

Comparison :
: optimization.

Primary

Comparison :
: optimization.
: optimization.
: optimization.
: optimization.
: optimization.
: optimization.
: optimization.
: optimization.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: application.ai

: classical.ac
: classical.ac
: subprogram.e

kermann’s
kermann’s
xternal

: subprogram.inline
: withdrawn.tests
: withdrawn.tests
: withdrawn.tests
: withdrawn.tests
: withdrawn.tests

: optimization.
: optimization.
: optimization.
: optimization.
: optimization.

aliasb
alias6
alias7

alias8

application.

loop_invariant

dead
folding
loop_invariant

dead
folding
loop_invariant

dead
folding
loop_invariant

dead

folding
avionics
avionics
avionics
avionics
avionics
avionics
avionics
avionics
avionics

common_sub_expr_elim

common_sub_expr_elim

common_sub_expr_elim

common_sub_expr_elim

207

arti_nscni
arti_nutmini
arti_sin
asyncil
async2
async3

async4d
asyncb

auto
avl_0
avl_1
avl_2
avl_3
avl_4
avl_5
avl_6
avl_ 7
avl_8
avl_9
avl_10
avl_1t
bmt
bsorti
bsort2
catl
cat?
cat3

ciol
cio2
cio3d
cio4
ciob
ciob
cio7
cio8

Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: I0
. I0.
: 10

Text_1I0
Text_I0

Text_I0

: application.avionics
: application.avionics
: application.avionics
: I0.
: I0.
: task.language_feature_tests
: delay.problems
: tagk.language_feature_tests
: I0.Text_I0

: task.language_feature_tests
: I0.
: classical.numerical.comp_fam_arch(CFA)
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: classical.numerical.comp_fam_arch(CFA)
: classical.sort

: classical.sort

: array.operations
: array.operations
: array.operations
: eXxception.raise
Incidental :

avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree
avl_tree

exception.handling

I0

10
10

10

.Text_I0
.Text_IO

Text_IO

.Text_IO0
.Text _IO
.Text_IO0
I0.

Text_I0

.Text_I0

208

cio9
ciolQ
cioll
ciol?2
ciol3
ciolsd
cigsort
claimO1
claim02
claim03
claim04
claim05
claim06
claimO7

claim08

¢laim09

claim10

claimitl

claimi2

claimi3

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary

Incidental

: I0.Text_I0

: I0.Text_I0

: 10.Text _I0

: 1I0.Text_I0

: 10.Text_I0

: 10.Text_IOD

: classical.sort

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: subprogram.local

: storage.reclamation
: loop.for

Incidental :

statement.goto

: storage.reclamation
: statement.block
Incidental :

statement.goto

: storage.reclamation
: loop.for

Incidental :
: storage.reclamation
: statement.block
Incidental :

statement.goto

exception.handling

: storage.reclamation
: exception.raise

statement.block

: exception.handling

209

claimil4

claiml$

claimlé

claim17

claimi8

claim19

claim20

claim21

claim22

claim23
claim24
claim25
claim26
claim27
claim28
claim29
claim30

claim31

claim32

Primary
Secondary
Incidental
Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Incidental
Primary
Secondary
Primary
Secondary

Incidental :

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: storage.reclamation
: subprogram.local
: exception.handling
: storage.reclamation
: subprogram.local
Incidental :

exception.handling

: storage.reclamation
: statement.block
: storage.reclamation

image

: storage.reclamation

array.operations

: storage.reclamation
: array.operations

: exception.handling
: storage.reclamation

array.operations

: storage.reclamation

array.operations
exception.handling

: storage.reclamation
: array.operations
Incidental :

exception.handling

: storage.reclamation

10.Text_I0

: storage.reclamation
: subprogram.local

: storage.reclamation
: storage.reclamation
: storage.reclamation
: storage.reclamation
: task.rendezvous

: storage.reclamation
: task.rendezvous

: storage.reclamation
: task.rendezvous

storage.reclamation

: task.rendezvous

storage.reclamation

. task.rendezvous

210

claim33
claim34
claim35
claim36
claim37

claim38

claim39
claim40
claim41l
claim42
claim43
claim44
claim45

claim46

claim47

common

complex_recordol
complex_record02
complex_record03
complex_record04
complex_record05
complex_record06

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Incidental
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

Primary
Secondary
Incidental
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: storage.reclamation

: task.rendezvous

: storage.reclamation

: tasgk.language_feature_tests
: storage.reclamation

: task.language_feature_tests
: storage.reclamation

: task.language_feature_tests
: storage.reclamation

: task.language_feature_tests
: storage.reclamation

: statement.block

: exception.handling

: storage.reclamation

: timing.clock

: storage.reclamation

: subprogram.inline

: storage.reclamation

: subprogram.inline

: storage.reclamation

: subprogram.inline

: storage.reclamation

: subprogram.inline

: storage.reclamation

: subprogram.inline

: storage.reclamation

: subprogram.inline

: storage.reclamation

: subprogram.inline
Incidental :
: storage.reclamation

: subprogram.inline

: exception.handling

: optimization.common_sub_expr_elim
: racord.operations

: record.operations

: record.operations

: record.operations

: record.operations

: record.operations

exception.handling

211

complex.record07
complex_record08
complex_record09

consistenti
consistent2
consgistent3d
consistent4
consistent5
consistent6
consistent7

crcO

crcil

crc2

crc3

crc4

csel

cse2

cse3

csed

cseb

cseb

cse’

cse8

cse9

csell
d.library_1
d_library_2
d_library_ 3
d_library_5
d_library_6
d_library.7
d_library_8
dead

Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: record.opera

record.opera
record.opera
consistency_
statement.if
consistency.
statement.if
consistency_
statement.if
consistency_
statement.if
consistency._
statement.if
consistency_
statement.if
consistency_

: statement.if

application.
application.
application.
application.
application.

optimization.

optimization

optimization.
optimization.
: optimization.
: optimization.
optimization.
: optimization.
optimization.
: optimization.

tions

tions

tions

check.timing._loop
.condition
check.timing_loop
.condition
check.timing_loop
.condition
check.timing_loop
.condition
check.timing_loop
.condition
check.timing_loop
.condition
check.timing_loop
.condition
cyclic_redundancy_check
cyclic_redundancy_check
cyclic_redundancy_check
cyclic_redundancy_check
cyclic_redundancy_check
common_sub_expr_elim
.common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim
common_sub_expr_elim

: package.
: package.
: package.
: package.
: package.

package.

: package.
: optimization.dead

overhead
overhead
overhead
overhead
overhead
overhead
overhead

212

delayl
delay2
delay3
delay4
delay5
delay6
delay7
delay8
delay9
delay10
delayil
delay12
delayi3
delay14
delay_abortl

delay_abort2

delay_zero0
delay_zerol
delay_zero2
delay_zero3
delay_zero4
delay_zeroS
delay_zero6
delay_zero6x
delay_zero7
delay_zero8
desi

des2

des3

des4

des4a

desb

desSa

des6

des6a

des?

des7a

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

delay_zero6

: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
! delay.problems
: task.language_feature_tests
: delay.problems
: task.language_feature_tests
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
: delay.problems
Comparison :
: delay.problems
: delay.problems
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.
: application.

data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard
data_encryption_standard

213

dhrys1t
dhrysil_mod
dhrys?2
dhrys2_mod
dhrys3
dhrys3_mod
elabl
elabl0
elab2
elab3
elab4
elabs
elabé
elab7
elab8
elab9
enum_iol
enum_io2
enum_io3
enum_io4
enum_iob
enum_1io6
enum_io7
enum_io8
enum_io9
ew

filterl

filterili
filter2
filter2i
filter3d
filter4d

firthi
firthix

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary

Comparison :

: withdrawn.tests
: classical.dhrystonse
: withdrawn.tests
: classical.dhrystone
: withdrawn.tests
: classical.dhrystone
: pragma.suppress.
! pragma.suppress.
! pragma.suppress.
! pragma.suppress.
! pragma.suppress.
! pragma.suppress.
! pragma.suppress.
! pragma.suppress.
! pragma.suppress.
: pragma.suppress.
: generic.instanstiation
! generic.instanstiation
! generic.instanstiation
: generic.instanstiation
: generic.instanstiation
1 generic.instanstiation
: generic.instanstiation
: generic.instanstiation
: generic.instanstiation
: application.avionics

elaboration_check
elaboration_check
elaboration_check
elaboration_check
elaboration_check
elaboration_check
elaboration_check
elaboration_check
elaboration_check
elaboration_check

: application.filter
: generic.subprogram

application.filter

: generic.subprogram
: application.filter
: generic.package
: application.filter
1 generic.package
: application.filter

application.filter

1 record.assignment

firtht

214

firth2
firth2x
firth2y
firth3
firth3x
firthd
firthéx
firths
firthbv
firthbSw
firth5x
firthby
firthSz
firth6é
firthéx
firth7
firth7x
fold
foldl
fold2
fold3
fold4
foldS
fold6
fold7
fold8
fold_mod
forward_eulerl
forward_euler2
funcexcp
gamm
gamm2
heapify
idioms
inst1
inst2
inst3
inst4

inst5

Primary
Primary

Comparison :
: record.aggregates

Primary

Comparison :
: statement.if.coding_style
: firth4

: subprogram.external

Primary
Comparison
Primary

Comparison :
Comparison :
Comparison :
Comparison :
Comparison :
: optimization.constant_propagation

Primary

Comparison :
: pragma.suppress.range_check

Primary

Comparison :
: withdrawn.tests

: optimiza.ion.folding

: optimization.folding

: optimization.folding

: optimization.folding

: optimization.folding

: optimization.folding

: optimization.folding

: optimization.folding

: optimization.folding

: application.avionics

: application.avionics

: exception.handling

: classical.GAMM_measure

: classical.GAMM_measure

: classical.numerical.comp_fam_arch(CFA)
: optimization.machine_idiom

: I0.Text_ IO

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Comparison :
Comparison :
Comparison :
Incidental :
Comparison :

: record.operations
: record.operations

firth2

firth3

firthb
firthb
firthS
firthb
firthb

firthé

firth?

instl
inst1
insti
image
instl

215

int_O
int_1
int_2
int_3
int_4
int_5
int_6
int_7
int_8
int_9
invar
io0
iol
io2
io3
iod
iob
io6
io7
io8
io9
io10
ioll
io12
io13
iol4
iols
iolé
io17
io18
iol19
io20
io21
i022
io23
io24
1025
io26
i027
io28

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: task.
¢ task.
: task.
. task.
: task
: task.
: task.
: task.
: task.
¢ task.

interrupt
interrupt
interrupt
interrupt

.interrupt

interrupt
interrupt
interrupt
interrupt
interrupt

: optimization.loop_invariant
: 10.Text_IO
: I0.Text_I0
: I0.Text_IO
: I0.Text_I0
: I0.Text_I0
: I0.Text_I0
: 10.Text_1I0
: I0.Text_IO
: I0.Text_IO

I0.Text_I0

: I0.Text_I0
: I0.direct
: I0.direct
: I0.direct
¢ I0.direct
: I0.direct
: I0.direct

: I0.sequential
: I0.sequential
: I0.sequential
: I0,sequential
: I0.sequential
: I0.sequential

I0.sequential

: 10.Text_I0
: 10.Text_I0

I0.Text_1I0

: 1I0.Text_IO
: I0.Text_1I0

216

io29
io30
io_80_20_1

io_80_20_9

i0o_80_20_10

io_copyl
io_copy?2
io_copy3
io_copy4
io_interl
io_inter2

io_inter3

io_mem1i
io_mem2
io_mem3
io_patternl
io_pattern2
io_pattern3
io_pattern4
io_patternd
io_patterné
io_pattern7
io_pattern8
io_recurl
io_recur2
io_recur3
io_scani
io_scan2
io_scan2x
io_scan3
io_scan4

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Comparison :
: I0.direct
: I0.direct

Primary
Primary

: I0.Text_10
: 10.Text_I0

I0.direct

: I0.direct

: I0.direct

: I0.direct

: I0.direct

: I0.direct

: I0.direct

: I0.direct

: I0.direct

: I0.direct

: 10.sequential

: 10.sequential

: I0.direct

: I0.direct

: I0.sequential

: I0.direct

: 10.sequential

: I0.direct

: 10.sequential

: record.operations
: record.operations
: record.operations
: ID.direct

. I0
: I0.
: I0.
. 10.
: I0.
. I0.
: I10.
: 10.
: 10.
: I0.
: I0
: 10

.direct

direct
direct
direct
direct
direct
direct
direct
direct
direct

.direct
.direct

io_scan?

217

io_scanb
io_scané
io_scan7
io_scan8
io_scanll
io_scani2
io_scani3
io_scani4
io_scanib
io_scanlé
io_scani?7
io_scani8
io_unifi
io_unif2
io_unif3
io_unif4
io_unifb
io_unifé
igsort
kalman

kernell
kernel2
kernel3
kernel4
kernelb
kernel6
kernel?7
kernel8
kernel9
kernellO
kernelil
kerneli2
kernell3
kernelid
kerneli5

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Incidental

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: 10.direct
: I0.direct
: I0.direct
: I0.direct
: I0.sequential
: 10.sequential
: I0.direct
: I0.direct
: I0.direct
: I0.direct
: I0.direct
: I0.direct
: I0.direct
: I0.direct
: I0.direct
¢ I0.direct
: I0.direct
: I0.direct
: classical.
: application.kalman_filter
: math.function.arctan

sort

math.function.cos
math.function.sin
math.function.sqrt

: classical
: classical
: classical
: classical.
: classical
: classical
: classical
: classical
: classical
: clasgical.
: classical
: classical
: classical
: classical
: classical

.numerical.
.numerical.
.numerical.

numerical.

.numerical.
.numerical.
.numerical.
.numerical.
.numerical.

numerical.

.numerical.
.numerical.
.numerical.
.numerical
.numerical.

livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops

.livermore_loops

livermore_loops

218

kernellé

kernelié_goto

kernelil?
kerneli18
kerneli9
kernel20
kernel21
kernel22
kernel23
kernel24
label
loop0
loop1l
loop2
loop3
loopda
loop4b
loopéc
loopS
loop6
loop7
loop8
loop9
loop10
looplil
loop12
loopi3
loop14
loop1b
loopi6
loopi1?7
lu
mergel
merge2
neural
purel
pure2
pure3
pured

Primary

Comparison :
: statement.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
¢ statement.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: classical.
: application.ai
: optimization.common_sub_expr_elim
: purel
: optimization.loop_invariant

Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Comparison
Primary

Comparison :

: classical.

kernelié

pured

numerical.

goto

numerical.
numerical.
numerical.
numerical.
numerical.
numerical.
numerical.
numerical.

null

numerical.
.knuth_loops

numerical

numerical.
.knuth_loops
numerical.
numerical.
.knuth_loops
numerical.

numerical

numerical

numerical

numerical.

numerical

numerical.

numerical
numerical

numerical

sort
sort

livermore_loopa

livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops
livermore_loops

knuth_loops
knuth_loops

knuth_loops
knuth_loops

knuth_loops

.knuth_loops

knuth_loops

.knuth_loops

knuth_loops

.knuth_loops
.knuth_loops
numerical.
numerical.
numerical.
.knuth_loops
numerical.
numerical.
numerical.

knuth_loops
knuth_loops
knuth_loops

knuth_loops
knuth_loops
comp_fam_arch(CFA)

219

pureb
pureé
pure?
pure8
puzzle
qsortl
qsort2
queens
queens_mod

Primary

Comparison :
: optimization.loop_invariant
: pure7
: classical.cube_placing
: classical.sort

: classical.sort

: withdrawn.tests

: classical.eight_queens

Primary
Comparison
Primary
Primary
Primary
Primary
Primary

reclaim_collection_constrained

Primary
Secondary

reclaim_collection_unconstrained

Primary
Secondary

reclaim_global_heap_constrained

Primary
Secondary

reclaim_global_heap_unconstrained

reed_solomon_0O
reed_solomon_1
reed_solomon_2
reed_solomon_3
reed_solomon_4
runge
s_library_1
s_library_2
s_.library_3
s_library_5
s.library_6
s_library_.7
s_library_8
search

shelll

shell2

sieve

Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

pureb

: storage.
: access.operations

: storage.
: access.operations

: storage.
: access.operations

: storage.
: access.operations

: application.error_correcting_code
: application.error_correcting_code
: application.error_correcting_code
: application.error_correcting_code
: application.error_correcting_code
: classical.numerical.comp_fam_arch(CFA)
: package
: package.
: package.
: package.
: package
: package.
: package.
: classical.search
: classical.sort

: optimization.common_sub_expr_elim

reclamation

reclamation

reclamation

reclamation

.overhead

overhead
overhead
overhead

.overhead

overhead
overhead

classical.sort

: classical.prime_number

220

simulate_bmbat
gsimulate_emrpm
simulate_hmproto
simulate_qmpitch
simulate_rcwirdet
simulate_umnav
simulate_kmdump
simulate_rmkeying
slicel

slice2

slice3

slice4

sliceb

sliceb

slice7

slice8

880

ss1

882

s82_modl1
882_mod2
883
ss84
885
8386
s87

888

ss88_mod
889
8810
ss1l
8812
gsl3
ssl4

8815

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary

Comparison :
: float.operations

: float.operations

: float.operations

: float.operations

: integer.operations

: optimization.machine_idiom
: conversion.integer

: optimization.folding

: conversion.integer

: integer.operations

Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary

: application.simulation
: application.simulation
: application.simulation
: application.simulation
: application.simulation
: application.simulation
: application.simulation
: application.simulation
: record.operations

: record.operations

: record.operations

: record.operations

: record.operations

: record.operations

: record.operations

: record.operations

: statement.null

: float.operations

: conversion.float

: optimization.folding

: conversion.float

s8s2_mod1

integer.operations
integer.operations

: conversion.integer

: conversion.float

: math.function.exp

: math.function.log

: optimization.strength_reduction
: expression.exponentiating

221

88i6

ss817
ss818
8819
8820

8821

8822

8823

8824

8825

8826
8827
8828
8829

8830

8831
8832
8833
8834
8835
8836
8837
8838
8839
8840

8841

ss841_mod

Primary
Secondary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: optimization.strength_reduction
: expression.exponentiating

: array.operations

: array.operations

: array.operations

: scope.local

: float.operations

: record.component.assignment

: expression.exponentiating

float.operations

: statement.block

: float.operations

: statement.block

: float.operations

: statement.block

: float.operations

: statement.block

: float.operations

: statement.goto

: math.function.sin

: math.function.cos

: expression.abs

: optimization.machine_idiom
: expression.abs

: optimization.machine_idiom
: math.function.exp

: math.function.log

: math.function.sqrt

: math.function.arctan

: math.function.sgn

: subprogram.external

: subprogram.external

: subprogram.external

: subprogram.external

: optimization.machine_idiom
: integer.operations

: optimization.folding

integer.operations

: optimization.folding

integer.operations

222

8842

8842_mod

8843

8844

8845

8846
8847

8848

8849

8850

8851

8852

8853

8854

8855

8856

8857

ss58

8859

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: optimization.folding

: integer.operations

: optimization.folding

: integer .operations

: optimization.machine_idiom

integer.operations

: optimization.algebraic_simplification
: integer.operations
: optimization.machine_idiom

integer.operations

: integer.operations
: optimization.algebraic_simplification
: integer.operations
: optimization.algebraic_simplification
: integer.operations
: optimization.algebraic_simplification

integer.operations

: optimization.algebraic_simplification
: expression.exponentiating

integer.operations

: optimization.algebraic_simplification
: expression.exponentiating

integer.operations

: optimization.machine_idiom

integer .operations

! pragma.suppress.index_check
: array.operations
! pragma.suppress.index_check
: array.operations

optimization.folding

: optimization.folding

: array.operations

: optimization.dead

: integer.operations

: array.operations

: loop.for

: loop.for

: array.operations

: optimization.machine_idiom
: float.operations

223

8860

8861

8862

8863

8864

8s65

8866

8867

8868

8869

8870

8871

8872
8873

8874
8875
8876
8877
8878

8879
8880

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

Primary
Secondary

Primary

Primary

Primary

Primary
Secondary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Secondary

: optimization.folding

: float.operations

: optimization.algebraic_simplification
: float.operations

: optimization.algebraic_simplification
: float.operations

: optimization.algebraic_simplification
: float.operations

: optimization.algebraic_simplification
: float.operations

: optimization.algebraic_simplification
: expression.exponentiating

float.operations

: optimization.algebraic_simplification
: expression.exponentiating

float.operations

: optimization.algebraic_simplification
Incidental :

float.operations

: optimization.dead
Incidental :
Comparison :
Incidental :
: optimization.folding
Incidental :
: optimization.dead

: float.operations

: boolean.expressions

: optimization.algebraic_simplification
: boolean.expressions

: optimization.algebraic_simplification
: boolean.expressions

: optimization.common_sub_expr_elim

: array.operations

: optimization.common_sub_expr_elim

: array.operations

: array.operations

: array.operations

: array.operations

: array.operations

: loop.for

float.operations
ss70
float.operations

float.operations

224

8881

8882
8883

8884
ss85
8886
8887
8888
8889
8890
8891
8892
8893

8894
8895
8895 _mod

8896
8896 _mod

8897
8897 _mod

8898
8898 _mod

8899

88100
88101
88102

83103

ss104
88105

Primary
Secondary
Primary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Primary
Primary

Primary
Primary

Primary
Primary

Primary
Primary

Primary
Primary
Primary
Primary

Primary

Incidental :
: loop.for
: loop.for
: optimization.loop_unrolling

Primary
Primary
Secondary

: array.operations
: loop.for

: statement.if
: statement.if
: optimization
: statement.if.
: statement.if.
: statement.if
: statement.if
: statement.if.
: statement.if.
: statement.if.
. statement.if
: statement.if.
: statement.if.
: optimization
: statement.if
: withdrawn.tests
: scope.local
Incidental :

.coding_style
.coding_style
.folding
coding_style
coding_style
.coding_style
.coding_style
coding_style
coding_style
coding_style
.coding_style
coding_style
condition

.redundant_code

.coding_style

integer.operations

: withdrawn.tests
: scope.intermediate
Incidental :

integer.operations

: withdrawn.tests
: scope.intermediate
Incidental :

integer.operations

: withdrawn.tests
: scope.intermediate
Incidental :

integer.operations

: type.string.assignment
: record.assignment

! boolean.expressions

: integer .MOD
Incidental :

integer.operations

integer.REM

integer.operations

225

88106

88107
88108
88109
88110
ssill
88112
88113

ssll4
88115

88116
88117

88118
88119
88120

ss121
88122
88123
58124
88125
88126
88127
88128

88129

88130

Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Primary
Secondary
Primary
Primary

Incidental :
: statement.case

: statement.case

: application.polynomial.coding_style
: array.operations

Incidental :

Primary
Primary
Primary
Secondary

Primary

Primary

Incidental :
: application.polynomial.coding_style
Incidental :
: parameters.default

: parameters.default

: parameters.default

: subprogram.local

: type.enumeration.attributes
: statement.if.condition

: statement.if.condition

Primary

Primary
Primary
Primary
Primary
Primary
Incidental
Primary

Comparison :

Incidental
Primary

1 statement.null

: loop.for

: conversion.fixed

: conversion.fixed

: fixed.operations

: fixed.operations

: type.string.assignment

: type.string.assignment

: expression.catenation

! type.string.assignment

: record.assignment

: record.component.assignment
: optimization.machine_idiom
: record.aggregates

: exception.raise

pragma.suppress.range_check
integer.operations

float.operations
loop.for

: application.polynomial.coding_style
Incidental :
: application.polynomial.coding_style

float.operations
float.operations

float.operations

88128

: integer.operations
: type.enumeration.attributes
Incidental :

integer.operations

226

88131

88132

88133

88134

881356

88136

88137

88138

88139

88140

8s141

8s142

88143

88144

88145

88146

83147

88148

88149

88150

Primary

Incidental :
: type.enumeration.operations

Primary

Incidental :
: type.enumeration.operations
: statement.case

: I0.Text_I0.float_string

: float.operations

: 10,.Text_I10.float_string

: float.operations

: I0.Text_I0.float_string

: float.operations

: I0.Text_I0.integer_string

: integer.operations

: parameters.modes

Incidental :
! parameters.modes
Incidental :
: parameters.modes
Incidental :

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Saecondary
Primary

Primary
Primary
Primary
Incidental
Primary
Incidental

Primary

Primary

Comparison :
: parameters.modes
Incidental :
: parameters.modes
Incidental :
: parameters.modes

: boolean.expressions
: generic.subprogram
Incidental :
1 generic.subprogram

: type.string.assignment
: generic.subprogram

: float.operations

Primary
Primary

Primary
Incidental
Primary

Primary
Secondary
Primary
Secondary

image
integer.operations

statement.if.condition

integer.operations
integer.operations

integer.operations

: subprogram.local
: float.operations
: subprogram.inline
: float.operations
: subprogram.local
Incidental :
: statement.if .condition

float.operations
88142
boolean.expressions

boolean.expressions

loop.while

227

88151

88152

s8153

88154

88155

88156

88157

88158

88159

88160

88161

88162

88163

8s164

88165

58166

Primary

Comparison :
: record.discriminants
: record.discriminants
: access.operations
Incidental :
: access.operations
Incidental :
: pragma.pack
: record.component.assignment
! pragma.pack
: record.component.assignment
! pragma.pack
: record.component.assignment
: pragma.pack
: record.component.assignment
: pragma.pack
: record.component.assignment
: pragma.pack

: access.operations
record.component .assignment
: storage.reclamation
! access.operations

Primary
Primary
Primary

Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

Primary
Secondary
Incidental
Primary
Secondary

Primary
Secondary
Incidental
Primary
Secondary

Primary
Secondary

: type.string.assignment

88149

float.operations

float.operations

loop.while

: storage.reclamation
! access.operations

Incidental :
: storage.reclamation

loop.for

access.operations

: loop.for

! storage.reclamation
: access.operations
Incidental :

loop.for
loop.while

: storage.reclamation
: access.operations
Incidental :

loop.for
loop.while

228

88167

ss8168

88169

88170

88171

88172

88173

88174

88175

88176

88177

88178

88179

83180

ss181

88182

88183

s8184

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

Incidental :

Primary

Comparison :
Incidental :

Primary

Incidental :

Primary

Comparison :
: optimization.
: loop.for
: loop.for

Primary
Secondary
Primary

Comparison :
: optimization.
: loop.exit
: optimization.
: loop.exit
: optimization.
: loop.exit

Primary
Secondary
Primary
Secondary
Primary
Secondary

loop.for

88176

statement.if.
: optimization
statement.if.
: statement.if.

ss178

88180

: storage.reclamation
: access.operations
Incidental :
: pragma.suppress.range_check
: array.operations

: pragma.suppress.range_check
: array.operations

: pragma.suppress.range_check
: array.operations

: pragma.suppress.range_check
: loop.for
: optimization.common_sub_expr_elim
: array.operations
: optimization.
: array.operations
: optimization.
: array.operations
: optimization.
: array.operations
: optimization.boolean_var_elim
: boolean.expressions
statement.if.
: boolean.expressions

machine_idiom

bounds_check

merge_tests

condition

condition

.merge_tests

condition
condition

loop_fusion

jump_tracing
jump_tracing

jump_tracing

229

88185

58186

88187

88188

88189

88190

88191

88192

88193

88194

88196

88196

88197

588198

88199

88200

88201

88202

88203

88204

88205

88206

Primary
Secondary
Primary
Primary
Primary
Secondary
Primary
Secondary

Comparison :
Incidental :
: expression.exponentiating
Incidental :
: optimization.bounds_check

: array.operations

: optimization.bounds_check

: array.operations

: optimization.bounds_check

: array.operations

: optimization.redundant_code
: integer.operations

: optimization.machine_idiom
: integer.operations

: optimization.machine_idiom
: integer.operations

: optimization.machine_idiom
: integer.operations

: optimization.machine_idiom
: integer .MOD

: optimization.machine_idiom
Incidental :
: integer.operations

Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Primary
Primary
Primary
Primary
Secondary
Primary

Incidental :
: statement.if.condition

Primary

Comparison :

: optimization.folding

: loop.while

: statement.if.coding_style

: statement.if.coding_style

: optimization.strength_reduction
: expression.exponentiating

: optimization.folding

: integer.operations

88189
integer.operations

integer.operations

integer.operations

integer.operations

: integer.operations
: optimization.machine_idiom

integer.REM

: optimization.machine_idiom

statement.if.condition

88205

230

88207

88208

88209

88210

88211

88212

88213

88214

88215

88216

88216_mod

88217

58218

88219

88219_mod

88220

Primary
Secondary
Primary
Secondary
Primary

Incidental :

Primary
Incidental
Primary

Comparison :

Primary

Incidental :

Primary
Secondary

Incidental :

Primary

Incidental :

Primary
Secondary
Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary

Incidental :

Primary
Secondary

Primary
Secondary

Primary
Secondary

: optimization.machine_idiom

: statement.if.condition

: optimization.machine_idiom

: statement.if.condition

: loop.while

integer.operations

: optimization.common_sub_expr_elim

: float.operations

: float.operations

88210

: optimization.loop_invariant

loop.for

: optimization.strength_reduction

: expression.exponentiating

integer.operations

loop.for

: optimization.machine_idiom

integer.operations

statement.if.condition

: optimization.machine_idiom

: record.component.assignment

: optimization.folding

: expression.exponentiating
float.operations

: optimization.folding

: expression.exponentiating
float.operations

: optimization.folding

: expression.exponentiating
integer.operations

: optimization.algebraic_simplification

float.operations

: optimization.folding

: expression.exponentiating
float.operations

: optimization.folding

: expression.exponentiating
float.operations

: optimization.algebraic_simplification

: float.operations

231

88221
88222
88223
88224
88225
88226

88227

88228

88229

88230

88231

88232

88233

88234

88235

88236

88237

Primary
Secondary
Primary
Primary
Primary
Primary
Secondary
Primary

Primary
Secondary

Primary
Primary

Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Primary
Primary
Secondary

Primary
Secondary

Primary
Secondary

Incidental :

: optimization.algebraic_simplification
: integer.operations

: optimization.loop_invariant

: statement.if.coding_style

: statement.if.coding_style

: optimization.dead

: loop.for

: optimization.dead

Incidental :
: optimization.folding
: boolean.expressions
Incidental :
: boolean.expressions
Incidental :
: boolean.expressions
Incidental :
: optimization.folding
: boolean.expressions
Incidental :
: optimization.folding
: boolean.expressions
Incidental :
: optimization.folding
: boolean.expressions
Incidental :
: conversion.integer
Incidental :
: conversion.integer
Incidental :
: optimization.register_allocation
: array.operations

: optimization.loop_induction

: loop.for

Incidental :

float.operations

statement.if.condition
statement.if.condition

statement.if .condition

statement.if.condition

statement.if.condition

statement.if .condition
float.operations

float.operations

subprogram.external
subprogram.local

: optimization.loop_induction
: loop.for

subprogram.external
subprogram.local

232

88238

88239

88240

88241

88242

88243

88244

88245

88246

88247

88248

88249

88250

88251
88252

88253
88254

88255

88256

88267

88258

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Primary
Secondary

Primary
Secondary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Secondary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Comparison :
: array.operations

Secondary

: optimization.loop_unrolling
t loop.for

: optimization.folding

: loop.for

: optimization.loop_unrolling
: loop.for

: conversion.null

Incidental :
: record.discriminants

: pragma.suppress.discriminant_check

integer.operations

pragma.suppress.range_check

: type.string.assignment

: array.operations

: record.component.assignment
: record.discriminants

: expression.attributes

: array.operations

: subprogram.local

: parameters.passing

: subprogram.local

: parameters.passing

: subprogram.local

: parameters.passing

: optimization.jump_tracing

: loop.exit

: type.enumeration.attributes
: type.enumeration.attributes
: pragma.suppress.range_check
: type.enumeration.attributes
: type.enumeration.attributes
: pragma.suppress.range_check
: type.enumeration.attributes
: pragma.suppress.range_check
: access.operations

: float.operations

: access.operations

: float.operations

: subprogram.local

58259

233

88259

88260

88261

88262

88263

88264

88265

88266

88267

88268

88269

88270
88271
88272
88273
88274
88275
88276

88277

88278

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Primary

Primary

Primary
Primary

Primary

Primary

Comparison :
: math.function.sgn
: integer.operations

Incidental
Primary

Comparison :
: math.function.sgn

Incidental
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Incidental :
: integer.bigint.operations
: conversion.integer

Primary
Secondary
Primary

: conversion.unchecked_conversion
: array.operations

: optimization.inline

: subprogram.local

: optimization.redundant_code

: statement.goto

: optimization.register_allocation
Incidental :

float.operations
statement.if.condition

: optimization.register_allocation
Incidental :

float.operations
statement.if.condition

: optimization.register_allocation
Incidental :

integer.operations
statement.if.condition

: optimization.register_allocation
Incidental :
: expression.abs
Incidental :
: type.named_number
Incidental :

integer.operations
integer.operations

integer.operations
math.function.sgn

: integer.operations

88267

88267

integer.bigint.operations

: integer.bigint.operations

integer.bigint.operations

: integer.bigint.operations
: integer.bigint.operations
: integer.bigint.operations

integer.bigint.operations
integer.REM

integer.bigint.operations

234

88279

88280

88281
88282

88283

85284

88285

88286

88287

88288

58289

88290

88291

88292

88293

588294

88295

88296

88297

88298

88299

88300
88301

Primary
Secondary
Primary
Secondary
Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary

Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Secondary

: optimization.strength_reduction
: expression.exponentiating

: integer.bigint.operations

: boolean.expressions

: integer.operations

: integer.bigint.operations

: conversion.integer

: integer.bigint.operations

: conversion.float

: integer.bigint.operations

: array.operations

: optimization.folding

: array.operations

: float.operations

: float.operations

: float.operations

: conversion.float

: conversion.float

: optimization.strength_reduction
: expression.exponentiating
Incidental :
: statement.if.condition
Incidental :
: expression.abs

: float.operations

: math.function.sin

: float.operations

: math.function.cos

: float.operations

: math.function.exp

: float.operations

: math.function.log

: float.operations

: math.function.sqrt

: float.operations

: math.function.arctan
: float.operations

: conversion.integer

: array.operations

: float.operations

float.operations

float.operations

235

88302

88303

88304

88305

88306

88307

88308

88309

88310
88311

88312

88313

88314

88315

88316

88317

Primary
Primary
Secondary
Primary
Secondary
Incidental
Primary
Secondary

Primary
Secondary
Incidental
Primary
Secondary

Primary
Incidental

Primary
Secondary
Primary
Primary

Primary

Primary

Incidental :
: optimization.folding
: float.operations

Incidental :
: float.operations

Primary
Secondary

Primary

Comparison :
Incidental :
: optimization.constant_propagation
: float.operations

: boolean.expressions

: optimization.constant_propagation
: float.operations

Incidental :

Primary
Secondary
Incidental
Primary
Secondary

: float.operations

: optimization.folding

: conversion.integer

: optimization.folding

: expression.exponentiating
: float.operations

: optimization.folding

: expression.exponentiating
Incidental :
: optimization.folding

: expression.exponentiating

: float.operations

: optimization.register_allocation
: expression.exponentiating
Incidental :
: float.operations
: math.function.exp

float.operations

float.operations

math.function.log

: type.enumeration.operations
: array.operations

: type.enumeration.operations
: exception.raise

Incidental :
: exception.raise
Incidental :
: exception.numeric_error

statement.if .condition
statement.if.condition

statement.if.condition

boolean.expressions

88314
boolean.expressions

boolean.expressions

236

88318

88319

88320

88321

88322

88323

88324

88325

88326

88327

88328

88329

88330

88331

88332

88333

88334

88335

88336

Primary
Secondary
Incidental
Primary

Incidental :
: optimization.algebraic_simplification
Incidental :
: optimization.algebraic_simplification
: statement.if.condition

: optimization.algebraic_simplification

Primary

Primary
Incidental
Primary

Incidental :
: optimization.machine_idiom
: float.operations
Incidental :
: float.operations

: statement.if.condition
: optimization.folding

: statement.case

: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: statement.if.condition
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: boolean.
: conversion.packed_to_unpacked
: boolean.
: boolean.
: boolean.

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: optimization.folding
: float.operations

: boolean.
: optimization.algebraic_simplification

expressions

statement.if .condition

statement.if .condition

statement.if.condition

boolean.

expressions

arrays.unpacked
expressions
arrays.unpacked
expressions
arrays.unpacked

arrays.unpacked
expressions
arrays.unpacked
expressions
arrays.unpacked
expressions
arrays.unpacked
expressions
arrays.unpacked
expressions
arrays.unpacked
expressions

expressions
arrays.unpacked
expressions

237

88337

88338

88339

88340

88341

88342

88343

88344

88345

88346

88347

88348

83349

88350

88351

88352

88353

88354

Primary
Secondary
Primary
Secondary
Primary
Secondary

Incidental :

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Incidental

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Incidental

Primary

: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
statement.if .condition
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: conversion.packed_to_unpacked
: boolean.expressions
: boolean.arrays.packed
boolean.arrays.unpacked
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: boolean.arrays.packed
: boolean.expressions
: conversion.unpacked_to_packed
: boolean.expressions
: boolean.arrays.unpacked
: boolean.expressions
: boolean.arrays.unpacked
: boolean.expressions
: conversion.packed_to_unpacked
: boolean.expressions
: boolean.arrays.packed
boolean.arrays.unpacked
: loop.exit

238

88355
88356
88357
s8358
88359
88360
88361
88362
88363
88364
88365
88366
88367

88368

88369

88370

88371

88372

58373

88374

88375

Primary

Primary
Incidental

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Secondary
Primary

Primary
Secondary

Primary
Primary

Primary
Incidental

Primary

Primary

: loop.exit
Incidental :
: loop.exit

! statement.goto

statement.if .condition

statement.if .condition

: loop.exit

: subprogram.local

: subprogram.local

: subprogram.local

: subprogram.nested

: optimization.folding
Incidental :
: pragma.suppress.range_check
Incidental :

integer.REM

integer .REM

: pragma.suppress.range_chack
Incidental :
: pragma.suppress.range._check
Incidental :
: pragma.suppress.range_chack
Incidental :
: pragma.suppress.range_check
Incidental :
: optimization.bounds_check
: expression.abs

: exception.numeric_error
Incidental :

integer.operations
subprogram.external
integer.operations

integer.operations

integer.operations
loop.while

: subprogram.local
! type.string.assignment
Incidental :

image

: type.string.assignment

! pragma.suppress.range_check
Incidental :
: pragma.suppress.range_check

integer.operations

integer.operations

: pragma.suppress.range_check
Incidental :

integer.operations

: pragma.suppress.range_check
Incidental :

integer.operations

239

88376

88377

88378
88379

88380

88381

88382

58383

88384

88385

88385x

88386

88387

58388

55389

88390

Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary

Primary

Primary

Primary

Incidental :

Primary

Comparison :
: statement.goto
Incidental :

Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary

: optimization.redundant_code
: loop.exit

: optimization.redundant_code
: loop.exit

: parameters.modes

: exception.handling
Incidental :
: exception.handling
Incidental :
: exception.handling
Incidental :
: exception.handling
Incidental :
: exception.handling
Incidental :
: exception.handling
Incidental :

subprogram.local
subprogram.local
subprogram.local
subprogram.local
subprogram.local

integer .operations
subprogram.local

: optimization.loop_rotation

loop.while
subprogram.external

: optimization.machine_idiom

88385

integer.operations
statement.if.condition

: optimization.loop_rotation
: loop.exit
Incidental :

integer.operations
subprogram.external

: optimization.loop_rotation
: loop.for

Incidental :
: optimization.register_allocation
: array.operations

: expression.parenthesis
: float.operations

: expression.parenthesis
: float.operations

subprogram.external

240

88391

88392

88393

88394

88395

88396

88397

88398

88399

88400

88401

ss402

88403

88404

88405

88406

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Incidental
Primary
Incidental

Primary
Incidental

Primary
Incidental

Primary
Incidental
Primary
Incidental

Primary
Incidental

Primary
Incidental

Primary
Incidental
Primary
Incidental

expression.parenthesis
float.operations
expression.parenthesis

: float.operations

expression.parenthesis
integer.operations
expression.parenthesis
integer.operations
expression.parenthesis
integer.operations
expression.parenthesis
integer.operations
application.lag_filter
float.operations
application.integration

: float.operations

statement.if .condition
application.symmetric_deadzone
float.operations

statement.if .condition
application.symmetric_limiter
float.operations

statement.if .condition
application.lag_filter
float.operations
application.integration
float.operations
statement.if.condition
application.symmetric_deadzone
float.operations
statement.if.condition
application.symmetric_limiter
float.operations
statement.if.condition
optimization.loop_flattening
array.operations
optimization.common_sub_expr_elim
array.operations
float.operations

loop.exit

241

88407

88408
88409

88410

ss411

88412
88413

s8414

ss41b

88416

ss417

88418

88419

88420

88421

58422

Primary
Incidental

Primary
Primary
Secondary
Incidental

Primary
Incidental
Primary

Comparison :

Incidental
Primary
Primary
Incidental

Primary
Incidental

Primary
Incidental
Primary
Incidental
Primary
Incidental

Primary
Incidental

Primary

Incidental
Comparison
Incidental
Primary
Secondary
Primary

Comparison :

: optimization.machine_iaiom

float.operations
record.component .assignment
optimization.machine_idiom
optimization.loop_induction
loop.for

array.operations
statement.if.condition
optimization.inline
array.operations
subprogram.inline

88410

array.operations
optimization.register_allocation
optimization.order_of_evaluation
float.operations
math.function.sgn
optimization.order_of_evaluation
float.operations
math.function.sgn
optimization.order_of_evaluation
float.operations
optimization.order_of_evaluation
float.operations
optimization.order_of_evaluation
float.operations

statement.if .condition
optimization.order_of_evaluation
float.operations

statement.if .condition
array.dynamic

parameters

array.operations

88419

array.operations
optimization.folding
statement.if .condition

loop.for

88213

242

88423

88424

88425

88426

88427

88428

88429

88430

88431

88432

88433

88434

Primary
Secondary

Incidental :

Primary

Comparison :

Incidental
Primary
Secondary
Incidental
Primary
Secondary

Primary

Incidental :

Primary
Incidental

Primary
Secondary
Incidental
Primary
Secondary
Incidental
Primary
Incidental

Primary
Incidental

Comparison :

Incidental

Primary
Incidental

: optimization.strength_reduction

loop.for
integer.operations
loop.for

88423
integer.operations

: optimization.strength_reduction
: loop.for

integer.operations

: loop.while

: optimization.strength_reduction
Incidental :
: optimization.dead

integer.operations

integer.operations
loop.exit

: optimization.common_sub_expr_elim

array.operations
integer.operations
loop.for

: optimization.loop_invariant

array.operations
integer .operations

: optimization.loop_invariant

array.operations
integer.operations
I0.Text_10.integer_string
expression.abs
float.operations
integer.operations
loop.for
statement.if.condition
optimization.algebraic_simplification
array.operations
float.operations

88432

array.operations
float.operations

: optimization.algebraic_simplification

array.operations
float.operations

243

88435

85436

88437

88438

88439

§8440

88441

88442

88443

88444

88445

88446

Primary
Incidental

Primary

Primary

Primary
Secondary

Primary
Secondary

Primary
Secondary

: optimization.algebraic_simplification

.
.

array.operations
float.operations

: optimization.algebraic_simplification
Incidental :

array.operations
float.operations

: optimization.algebraic.simplification
Incidental :

array.operations
float.operations

: optimization.test_swapping
: statement.if.condition
Incidental :

array.operations
loop.for

: optimization.test_swapping
: statement.if.condition
Incidental :

Incidental :

Primary

array.operations
loop.for

: optimization.merge_tests
: statement.if.condition

integer.operations
loop.for

: statement.if.condition

Comparison :
Incidental :

Primary

Primary

85440
integer.operations
loop.for

: optimization.register_allocation
Incidental :

Incidental :

Primary

Incidental :

Primary

Incidental :

Primary
Incidental

array.operations
float.operations
loop.for

: optimization.register_allocation

array.operations
float.operations
loop.for

! pragma.numeric_error

float.operations

! pragma.numeric_error

integer.operations

: pragma.numeric_error

integer .MOD
integer.operations

244

588447

88448

88449

88450

88451

88452
88453
88454

88455
88456
88457
88458
88459
88460
ss461
88462
88463
ss464

88465
58466

88467

88468

88469

88470

88471

Primary

Primary
Incidental
Primary
Incidental
Primary
Incidental
Primary

Primary
Primary
Primary

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

Primary
Primary

Primary

Primary

Incidental :
: package.overhead
Incidental :
: package.overhead
Incidental :
: package.overhead
Incidental :

Primary
Primary

Primary

: pragma.numeric_error
Incidental :

integer.operations
integer .REM

: pragma.numeric_error
: float.operations

: pragma.numeric_error
: integer.operations

: pragma.numeric_error
: float.operations

: pragma.numeric_error
Incidental :
: timing.clock

: timing.calendar
: timing.calendar
Incidental :
: delay.problems

: timing.calendar
: timing.calendar
: delay.problems

: delay.problems

: fixed.operations
: fixed.operations
: fixed.operations
: fixed.operations
: fixed.operations
Incidental :

integer .operations

float.operations

boolean.expressions

: fixed.operations
: conversion.fixed
Incidental :

integer .operations

: conversion.fixed
Incidental :
: conversion.integer

float.operations

integer.operations
integer.operations
integer.operations

integer.operations

245

88472

88473

88474

88475

88476

88477

88478
88479

88480

88481

88482

88483

88484

88485

88486

Primary

Incidental :

Primary

Primary

Primary

Primary

Primary

Primary
Primary

Primary

Primary

Primary

Primary
Secondary
Primary
Secondary
Primary

Primary
Incidental

package.overhead
integer.operations
loop.for

: package.overhead
Incidental :

integer.operations
loop.for

: package.overhead
Incidental :
: package.overhead
Incidental :

integer.operations

integer.operations

: package.overhead
Incidental :
: package.overhead
Incidental :

integer.operations

array.operations
loop.for

: generic.subprogram
: type.character.operations
Incidental :

loop.while
statement.if.condition

: type.character.operations
Incidental :

loop.while
statement.if .condition

: type.character.operations
Incidental :

loop.while
statement.if .condition

: type.character.operations
Incidental :

loop.while
statement.case

: subprogram.local
: type.named_number
: subprogram.local
: type.named_number
: subprogram.local
Incidental :
: boolean.expressions

: boolean.arrays.unpacked

float.operations

subprogram.local
type.character.operations

246

88487

88488

88489

88490

88491

88492

88493
88494
88495
88496
88497
88498
88499

88500

88501

88502

88503

Primary

Incidental :

Primary

Incidental :

Primary

Primary

Incidental :

Primary

Incidental :

Primary

Primary
Primary

Comparison :
: statement.if.coding_style
: statement.if.coding_style
: statement.if.coding_style
: boolean.expressions

Primary
Primary
Primary
Primary

Comparison :
: conversion.unchecked_conversion
: boolean.expressions

: boolean.arrays.packed

Primary
Secondary
Incidental

Primary
Secondary
Incidental

Primary
Secondary

Incidental :

Primary
Secondary

: boolean.expreasions

subprogram.local
type.character.operations

: boolean.expressions

statement.case
type.character.operations

: boolean.expressions
Incidental :
: statement.if.coding_style

type.character.operations

integer.operations
loop.for

: statement.if.coding_style

integer.operations
loop.for

: boolean.expressions
Incidental :

subprogram.local
type.character.operations

: type.character.operations
: statement.if.coding_rtyle

88494

88498

integer.operations

: conversion.unchecked_conversion
: boolean.expressions
: boolean.arrays.packed

integer.operations

: conversion.unchecked_conversion
: boolean.expressions

boolean.arrays.packed
integer.operations

: optimization.machine_idiom
: integer.operations

247

88504

88505

88506

88507

88508

88509

88510

88511

88512

88513

88514

88516

88516

Primary
Secondary
Primary
Secondary
Primary
Incidental

Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary
Primary
Secondary
Incidental

Primary
Secondary
Incidental

Primary

Primary

Incidental :
: record.operations
: float.operations
: loop.for
Incidental :

Primary
Incidental
Primary

: optimization.data_flow

: statement.if.condition

: optimization.data_flow

: statement.if.condition

: conversion.unchecked_conversion
: boolean.arrays.packed

integer.operations

: optimization.register_allocation
: statement.if.condition
Incidental :
: optimization.common_sub_expr_elim
: statement.if.condition

Incidental :
: optimization.common_sub_expr_elim
: statement.if.condition

Incidental :
: optimization.register_allocation
: statement.if.condition

: optimization.register_allocation
: array.operations

: float.operations

integer.operations

array.operations

array.operations

integer.operations
loop.for
statement.if.condition

: optimization.register_allocation
: array.operations
: float.operations

integer.operations
loop.for
statement.if.condition

: record.operations
Incidental :
: record.operations

float.operations

float.operations

array.operations
subprogram.external

248

88517

88518

88519

88520

88521
88522
88523
88524
88525
88526
88527
88528

88529

88530

88531

88532

88533

88534

Primary

Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Incidental
Primary
Incidental
Primary

Incidental :
: optimization.constant_propagation
: float.operations

Primary
Incidental

Primary

Primary

Primary
Primary

Primary

: loop.for
Incidental :

array.operations
subprogram.external

: loop.for
: array.operations
Incidental :

subprogram.external

: loop.for
: array.operations
Incidental :
: loop.for
: array.operations
Incidental :

subprogram.external

subprogram.external

: subprogram.local

: subprogram.local

: subprogram.local

: boolean.arrays.packed
: boolean.arrays.packed
: loop.for

: boolean.arrays.packed
: statement.if.condition
: exception.handling

: statement.if.condition
: exception.handling

statement.if .condition

type.named_number

: optimization.common_sub_expr_elim
Incidental :

float.operations
type.named_number

: optimization.register_allocation
Incidental :

float.operations
type.named_number

: optimization.folding
Incidental :
: optimization.common_sub_expr_elim
Incidental :
: optimization.register_allocation
Incidental :

float.operations
float.operations

float.operations
type.named_number

249

88535

88536

88537

ssb38

88539

88540

ssb41

88542

88542x

88543

s8544

88545

88546

88547

Primary

Primary
Secondary

Primary

Incidental :

Primary

Incidental :

Primary

Incidental :

Primary

Incidental :

Primary
Secondary

Primary
Secondary

Primary

Comparison :
Incidental :

Primary
Saecondary

Incidental :
: statement.block

: statement.null

: optimization.order_of_evaluation
Incidental :
: optimization.order_of_evaluation
Incidental :
: optimization.order_of_evaluat ion
Incidental :

Primary
Secondary
Primary

Primary

Primary

: loop.for
Incidental :

array.operations
float.operations

: optimization.loop_invariant
: loop.for
Incidental :

array.operations
float.operations

: optimization.folding

I0.Text_IO
statement.if.condition

: optimization.folding

10.Text 10
statement.if.condition

: optimization.folding

I0.Text_I0
statement.if.condition

: optimization.folding

10.Text_IO
statement.if.condition

: optimization.loop_unrolling
: loop.for
Incidental :

array.operations

: optimization.loop_unrolling
: loop.for

Incidental :
: loop.for

array.operations

88542
array.operations

: optimization.unreachable_code
: exception.handling

statement.null

array.operations
subprogram.external

float.operations
subprogram.external

250

88548

88549

88550

88551

88552

88553

ss554

88555
88556

88557

88558

88559

88560

88561

8s8561x
88562

88563

Primary

Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Secondary
Primary
Incidental
Primary
Secondary

Primary

Comparison :
Incidental :
: optimization.algebraic_simplification

Primary
Secondary
Primary

Comparison :
: statement.if.condition
: optimization.folding

: parameters.modes
Incidental :

Secondary
Primary
Primary

Primary
Secondary

: optimization.order_of_evaluation
Incidental :

float.operations
subprogram.external

: optimization.order_of_evaluation
Incidental :

float.operations
subprogram.external

: optimization.order_of_evaluation

integer.operations

: optimization.order_of_evaluation
: integer.operations

: optimization.order_of_evaluation
: float.operations

: optimization.common_sub_expr_elim
: array.operations

: optimization.common_sub_expr_elim
: array.operations

: optimization.machine_idiom

: optimization.folding

integer.operations

: optimization.register_allocation
: array.operations

¢ optimization.folding

: statement.if.condition
Incidental :
: statement.if.condition

integer.operations

ss558
integer.operations

integer.operations
integer.operations
88560

array.operations
math.function.sgn

: optimization.folding
: subprogram.inline
Incidental :

integer.operations

251

88564

88565

88566

88567

88568

88569

88570

88571

88572

88573

88574

88575

88576

88877

88578

88579

88580

88581

88582

Primary
Secondary
Incidental
Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: optimization.folding
: subprogram.inline

: integer.operations
: optimization.folding
: subprogram.inline
Incidental :
: parameters.passing
: integer.operations
: parameters.passing
: integer.operations
: parameters.passing
: integer.operations
: parameters.passing
: integer.operations
: parameters.passing
: integer.operations
: parameters.passing

integer.operations

integer.operations

: parameters.passing

integer.operations

: parameters.passing
: integer.operations
: parameters.passing
: integer.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations
: parameters.passing
: float.operations

252

88583

88584

88585

88586

88687

88588

88589

88590

s8591

88592

88593

88594

88595

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Comparison :

Comparison :

Comparison :

Comparison :

Primary
Secondary

: parameters.passing

: float.operations

: parameters

: integer.operations

: parameters

: float.operations

: math.function.arcsin
Incidental :

float.operations

: optimization.folding
: type.named_number

: optimization.folding
: float.operations

: optimization.folding
: float.operations

: optimization.folding
: float.operations

: float.operations

58587
85588
85589
88590
88587
ss588
88589
88590
88591
88587
88588
88589
88590
88591
58587
59588
88589
88590
88591

: optimization.folding
: float.operations

253

88596

88597

88598

88599

88600

88601

88602

88603

88604

88605

88606

88607

88608

58609

88610

Primary
Secondary

Comparison :
: array.operations

: record.discriminants
: boolean.expressions

Incidental
Primary
Incidental

Comparison :
Incidental :

Primary

Primary
Incidental

Primary

Primary

Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: array.constraints
: subprogram.local
Incidental :

array.operations
subprogram.external
58596

exception.handling
subprogram.local
85598
boolean.expressions
exception.handling
subprogram.local

: record.discriminants
Incidental :
Comparison :
Incidental :
: record.discriminants
: boolean.expressions

subprogram.local
88600
subprogram.local

exception.handling

: record.discriminants
Incidental :
: record.discriminants
Incidental :

subprogram.local

boolean.expressions
exception.handling
subprogram.local

: record.discriminants
Incidental :
: optimization.register_allocation
: float.operations
: optimization.register_allocation
: float.operations
: optimization.register_allocation
: integer.operations
: optimization.register_allocation
: float.operations
: optimization.register_allocation
: integer.operations

subprogram.local

254

s8611

88612

88613

88614

88615

58616

§8617

8s618

88619

88620

88621

88622

88623

88624

88625

88626

58627

88628

88629

Primary
Secondary
Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Primary
Primary
Primary
Primary
Primary
Primary
Incidental
Primary
Incidental

Primary
Incidental

: optimization.machine_idiom

integer.operations

: optimization.register_allocation
: loop.exit

Incidental :
: pragma.suppress.discriminant_check
! parameters.passing

: pragma.suppress.discriminant_check
: parameters.passing

: pragma.suppress.discriminant_check
! parameters.passing

: pragma.suppress.discriminanc_check
: parameters.passing

: pragma.suppress.discriminant_check
: parameters.passing

: pragma.suppress.discriminant_check
! parameters.passing

: optimization. jump_tracing

: statement.goto

: optimization. jump_tracing

: statement.goto

: generic.subprogram

Incidental :

integer.operations

float.operations

: generic.subprogram
Incidental :

float.operations

: generic.subprogram
Incidental :
: generic.subprogram
Incidental :
: generic.subprogram
Incidental :
: generic.subprogram
Incidental :
. generic.subprogram
: float.operations

: generic.subprogram
: float.operations

: generic.subprogram
: float.operations

float.operations
float.operations
float.operations

float.operations

255

88630

88631

88632

88633

88634

88635

83636

88637

838638

88639

88640

88641

88642

88643

88643x

85644

88645

88646

Primary
Incidental
Primary
Incidental
Primary

Primary
Incidental
Primary
Primary
Primary
Primary

Incidental
Primary

Incidental :

Primary

Primary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Incidental
Primary
Incidental

: generic.subprogram
: float.operations
: generic.subprogram
: float.operations
: subprogram.external
Incidental :

float.operations

: subprogram.inline
: float.operations

: statement.overhead
Incidental :
: statement.overhead
Incidental :
: statement.overhead
Incidental :
: statement.overhead

integer.operations
integer.operations
integer.operations

integer.operations

: optimization.dead

exception.handling
integer.operations
subprogram.external

: optimization.dead
Incidental :

integer.operations
subprogram.external

: optimization.dead
Incidental :

integer.operations
subprogram.external

: optimization.dead

: subprogram.external

: optimization.dead

: subprogram.external

: optimization.common_sub_expr_elim
: float.operations

: float.operations

! expression.exponentiating

: optimization.common_sub_expr_elim

statement.if.condition

: array.operations
: float.operations

array.operations

: float.operations

256

88647

88648

88649

88650

ss651

88652

88653

88654

88655

838656

88657

88658

88659

88660

88661

88662

Primary

Incidental :

Primary
Incidental
Primary
Secondary
Incidental
Primary
Secondary
Incidental
Primary
Secondary
Incidental
Primary
Incidental

Primary
Incidental
Primary
Incidental

Primary
Incidental

Primary
Incidental
Primary
Incidental
Primary
Incidental
Primary
Incidental

Primary
Incidental

Primary
Incidental
Primary
Incidental

array.operations
float.operations
access.operations
array.operations

: optimization.dead

: statement.if.condition
: float.operations

: optimization.dead

statement.if.condition

: float.operations
: optimization.dead

loop.for
integer.operations

: representation.pack.unpack

array.operations
integer .operations

: representation.pack.unpack

array.operations

: representation.pack.unpack

array.operations
loop.for

: representation.pack.unpack

array.operations
loop.for

: representation.pack.unpack
: array.operations
: representation.pack.unpack

array.operations

: representation.pack.unpack

array.operations

: representation.pack.unpack

array.operations
loop.for

: representation.pack.unpack

array.operations
loop.for

: representation.pack.unpack

array.operations
representation.pack.unpack

: array.operations

257

88663

88664

88665

88666

88667

88668

88669

88670

88671

88672

88673

88674

83675

88676

88677

88678

Primary

Primary

Primary

Primary
Primary
Primary

Primary

Primary

Incidental :

Primary
Primary
Primary

Primary

Primary

Primary
Primary

Primary

: representation.pack
Incidental :
: representation.pack.
Incidental :

array.operations

array.operations
loop.for

: representation.pack.
Incidental :

array.operations
loop.for

: representation.pack.
Incidental :
: representation.pack.
Incidental :
: representation.pack
Incidental :
: representation.pack.
Incidental :

array.operations
array.operations
array.operations

array.operations
loop.for

: representation.pack.

array.operations
loop.for

: representation.pack.
Incidental :

array.operations

: representation.pack.
Incidental :
: representation.pack.
Incidental :
: representation.pack.
Incidental :

array.operations
array.operations

array.operations
loop.for

: representation.pack.
Inci“ental :

array.operations
loop.for

: representation.pack.
Incidental :
: representation.pack
Incidental :
: representation.pack.
Incidental :

array.operations
array.operations

array.operations

.unpack

unpack

unpack

unpack

unpack

.unpack

unpack

unpack

unpack
unpack
unpack

unpack

unpack

unpack

.unpack

unpack

258

88679

s8680

88681
85682
88683
85684
88685

88686
s8686x

88686y

88687
85688

88689

88690

88691
88692
88693

88694

Primary

.
.

representation.pack.unpack

Incidental : array.operations

Primary

Primary
Incidental
Primary
Primary
Primary
Primary
Primary
Primary
Secondary

Incidental :

Primary
Secondary

Primary
Primary

Primary

Primary

Primary
Primary

Primary

.

loop.for

: representation.pack.unpack
Incidental :

array.operations
loop.for

: representation.pack.unpack
: array.operations

: boolean.record

: boolean.record

: boolean.record

: boolean.record

: withdrawn.tests
: boolean.expressions
. statement.if.condition

loop.for

: boolean.expressions

: statement.if.condition
Incidental :
: representation.pack.unpack
Incidental :
: representation.pack.unpack
Incidental :
: representation.pack.unpack
Incidental :

loop.for
array.operations
array.operations

array.operations
loop.for

: representation.pack.unpack
Incidental :

array.operations
loop.for

: representation.pack.unpack
Incidental :
: representation.pack.unpack
Incidental :

Incidental :
: representation.pack.unpack
Incidental :

Primary

array.operations

array.operations

: representation.pack.unpack

array.operations

array.operations
loop.for

259

88695

88696

88697

88698

88699

88700

88701

88702

88703

88704

88705

88706

88707

88708

88709

88710

Primary

Primary
Primary
Primary

Primary

Primary

Primary
Primary
Primary

Primary

Primary

Primary
Primary
Primary

Primary

Primary

: representation.pack
Incidental :

: representation.pack
Incidental :
: representation.pack
Incidental :
: representation.pack
Incidental :
. representation.pack.
Incidental :

: representation.pack
Incidental :

: representation.pack
Incidental :

: representation.pack
Incidental :
! representation.pack.
Incidental :

array.operations
loop.for

array.operations
array.operations
array.operations

array.operations
loop.for

array.operations
loop.for

array.operations

¢ representation.pack.
Incidental :

array.operations
array.operations

array.operations
loop.for

: representation.pack.
Incidental :

array.operations
loop.for

! representation.pack.
Incidental :
: representation.pack.
Incidental :

array.operations

array.operations

: representation.pack.
Incidental :
: representation.pack.
Incidental :

array.operations

array.operations
loop.for

: representation.pack.
Incidental :

array.operations
loop.for

.unpack

.unpack
.unpack

.unpack

unpack

.unpack

.unpack

unpack

.unpack

unpack

unpack

unpack
unpack
unpack

unpack

unpack

260

gs711

88712

55713

88714

88715

88716

88717
88718
88719
88720
88721
88722
88723
88724
88724 _mod

88725
88725_mod

88726
88726_mod
88727
88727 _mod
88728
88728 _mod
88729
88729 _mod
88730
88730_mod

Primary
Primary
Primary

Primary

Primary

Primary

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

¢ representation.pack.unpack
Incidental :
: representation.pack.unpack
Incidental :
: representation.pack.unpack
Incidental :
: representation.pack.unpack
Incidental :

array.operations
array.operations
array.operations

array.operations
loop.for

: representation.pack.unpack
Incidental :

array.operations
loop.for

: representation.pack.unpack
Incidental :
: boolean.record

: boolean.record

: boolean.record

: boolean.record

: conversion.fixed

: conversion.fixed

: conversion.fixed

: withdrawn.tests

: representation.pack.unpack
: record.component.assignment
: withdrawn.tests

: representation.pack.unpack
: record.component.assignment
: withdrawn.tests

: type.named_number

: withdrawn.tests

: type.named_number

: withdrawn.tests

¢ type.named_number

: withdrawn.tests

: integer.operations

: withdrawn.tests

: representation.attributes
Incidental :

array.operations

subprogram.external

261

88731
88731 _mod

s8732
88732_mod

88734
88734 _mod

88735
88735_mod

88736
88736_mod

88737
88737 _mod

88738
88738_mod

88739
88739_mod

88740
88740_mod

ss741

88744
88745
88746

88747
88748

Primary
Primary

Primary
Primary

Primary
Primary

Primary
Primary

Primary
Primary
Secondary
Primary
Primary
Secondary
Primary
Primary
Secondary
Primary
Primary
Secondary
Primary
Primary
Secondary
Primary

Incidental :

Primary

Comparison :
: integer.operations

Primary

Comparison :
! access.operations

: interface.language.assembly
: access.operations

: subprogram.local

Primary
Primary
Primary
Secondary

: withdrawn.tests

: representation.attributes
Incidental :
: withdrawn.tests

: representation.attributes
Incidental :
: withdrawn.tests

: representation.attributes
Incidental :
: withdrawn.tests

: representation.attributes
Incidental :
: withdrawn.tests

: representation.attributes

: record.component .assignment
: withdrawn.tests

: representation.attributes

: record.component.assignment
: withdrawn.tests

: representation.attributes

: record.component.assignment
: withdrawn.tests

: representation.attributes

: access.operations

: withdrawn.tests

: representation.attributes

: task.language_feature_tests
: storage.reclamation

array.operations

array.operations

array.operations

array.operations

exception.handling
loop.for

: integer.operations

88746

88746

262

88749

88750

88751

88752

88753

88754

88755

ss756

88757

88758

88759

88760

Primary
Secondary

Primary
Secondary

Primary
Secondary
Primary
Secondary

Primary
Secondary

Incidental :
: optimization.data_flow
: integer.operations

Incidental :

Primary
Secondary

Primary
Secondary

Primary

Primary

Comparison :

Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary

: optimization.loop_invariant
: loop.for

Incidental :
: optimization.loop_interchange
: loop.for

Incidental :
: optimization.unresachable_code
: statement.if.condition

: optimization.loop_invariant

: loop.for

Incidental :
: optimization.data_flow

array.operations

array.operations

integer.operations
integer.operations

float.operations

float.operations
statement.if .condition

: optimization.data_flow
: exception.raise

Incidental :
: optimization.data_flow
Incidental :

integer.operations

integer.operations

: pragma.suppress.range_check

88753
s8754
88755
88756

: exception.raise
Incidental :

integer.operations

: array.operations
: pragma.suppress.range_check
Incidental :
: array.operations
: pragma.suppress.range_check
Incidental :
: array.cperations
: pragma.suppress.range_check
Incidental :

float.operations

float.operations

float.operations

263

88761

88762

88763

88764

88765

88766

88767

88768

88769

88770

88771

88772

88773

88774

88775

88776

88777

88778

Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary

Comparison :
: consistency_check.timing_loop

Primary

Comparison :

Primary

Comparison :
: consistency_check.timing_loop

Primary

Comparison :
: consistency_check.timing_loop

Primary

Comparison :
: array.operations
Incidental :
! array.aggregates
Incidental :
: array.operations
: loop.for

Incidental :
: array.operations
Incidental :
: array.aggregates
Incidental :

Primary
Primary

Primary
Secondary

Primary

Primary

;. array.operations
! pragma.suppress.range_check
Incidental :
: array.operations
{ pragma.suppress.range_check
Incidental :

float.cperations

float.operations

: array.operations

: pragma.suppress.range_check
Incidental :
: boolean.arrays.packed

¢ array.aggregates

: boolean.arrays.packed

! array.aggregates

: boolean.arrays.packed

: array.aggregates

: boolean.arrays.packed

: array.aggregates

: boolean.arrays.packed

: array.aggregates

: consgistency_check.timing_loop

float.operations

88768

8s768

: consistency_check.timing_loop

88768
88768
88768
integer.operations

integer.operations

integer .operations
integer.operations

integer.operations

264

88779

88780

88781

88782

88783

88784

88785

88786

88787

88788

88789

88790

88791

88792

88793

88794

88795

88796

88797

88798

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Secondary

: package.overhead
: float.operations
: package.overhead
: float.operations
: package.overhead
: float.operations
: package.overhead
: float.operations
: package.overhead
: float.operatijons
: package.overhead
: float.operations
: package.overhead
: float.operations
: package.overhead
: float.operations
: package.overhead
: float.operations
: package.overhead
: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations
: record.overhead

: float.operations

265

88799
88800

88801
88802

88803
88804
88805

88806

88807

88808

88809
88810
88811

ssearch
ssearch?2
strength
tak
target
taskl
task?2
task3
task4
task5b
taské
task?7
task8
task9

Primary
Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Incidental
Primary
Secondary

Primary
Secondary

Primary
Secondary

Primary
Secondary
Primary
Secondary
Primary
Secondary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: timing.calendar
: timing.calendar
: statement.if.condition
: timing.calendar
: statement.if.condition
: timing.calendar
: statement.if.condition
: timing.calendar

: statement.null

: access.operations

: boolean.expressions
: optimization.folding
: generic.package

math_dep.intexp

: optimization.folding
: generic.package

math_dep.adx

: optimization.folding
1 generic.package

math_dep.setexp

: math_dep.intexp
: generic.package

: math_dep.adx

: generic.package
: math_dep.setexp
: generic.package
: classical.search
: classical.search
: optimization.strength_reduction
: subprogram.local
: clagsical.numerical.comp_fam_arch(CFA)
: task.language_feature_tests

: task.language_feature_tests

: task.language_feature_tests

: task.language_feature_tests

: task.language_feature_tests

: task.language_feature_tests

: classical.dining_philosophers

: classical.dining_philosophers

: classical.dining_philosophers

266

taskl10
taskil
task12
taski13
task14
task15
task16
task17
task18
taskl19
task20
task21
task22
task23
task24
task25
tagk26
taskl7
task28
task29
task30
task31
task32
task33
task34
task34_delta
task35
task35_delta
task36
task37a
task37b
task38
task39
task40
task4l
task42
task43
task44a
task44b

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary

: classical.dining_philosophers
: task.language.feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language _feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
¢ task.language_feature_tests
: classical.dining_philosophers
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.langnage_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests

267

task4ba
task45b
task46
task46x
task47
task48
task49
task50
task51
task52
task5b3
task54
task54_mod
task55
task55_mod
task56
task57
task58
task59
task60
task_num_1
task_num_5
task_num_10
task_num_15
task_num_20
task_num_25
task_num_30
task2_num_1
task2_num_5
task2_num_10
task2_num_15
task2_num_20
task2_num_25
task2_num_30
triel

trie2

unreach

Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Primary
Secondary
Primary
Secondary
Primary

: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: withdrawn.tests

: task.storage_size

: withdrawn.tests

: task.storage_size

: task.storage_size

: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.language_feature_tests
: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: task.rendezvous

: application.trie

: access.operations

: application.trie

: access.operations

: optimization.unreachable_code

268

whett

whet2

whet3

whet4

Primary
Incidental

Primary
Incidental

Primary
Incidental

Primary
Incidental

.
.

classical.whetstone

: math.function.arctan

math.function.cos
math.function.exp
math.function.log
math.function.sin
math.function.sqrt
classical .whetstone

: math.function.arctan

math.function.cos
math.function.exp
math.function.log
math.function.sin
math.function.sqrt

. classical.whetstone
: math.function.arctan

.

math.function.cos
math.function.exp
math.function.log
math.function.sin
math.function.sqrt
classical.whetstone
math.function.arctan
math.function.cos
math.function.exp
math.function.log
math.function.sin
math.function.sqrt

269

5.7 Appendix VII, SYSTEM DEPENDENT TEST PROBLEMS

This appendix contains a list of test problems which exercise system dependent features. The test prob-
lems are listed in alphabetical order under the system dependent feature (which is also alphabetically
listed). This appendix also contains a list of test program files that WITH the MATH package.

270

System Dependency

Test Problem Namme(s)

MATH package |

ss162 .. ss167
task54_‘

forward_eulerl

kalman
kernel17 .. 24
runge

ss31 .. ss34
§s279

ss304 .. ss308
55562

ss543x
sim_emrpm*
sim gmpitch*

55242 .. ss250
ta§k775_5

forward_euler?2

kernell .. 16
loop7 .. loop8
ssl4 .. ssl16
ss50 .. ss51
ss291

ss406

55586

55650

sim_hmproto*
sim rcwirdet*

32 bit integers kalman kernell3 kernell4
kernell6 kernel16_goto
loop4a loop4b loopdc
s5258 .. 55285 ss301 .. ss315 target

| Double precision gamm2 kalman loop3

reals loop15 ss286 .. ss303 whet3

File 1/0 iol .. i023

Interface to assembly ss747

language

Interrupts int 0..int 9

Length Clause ew rec coll c* rec coll u*
rec_glob_c* rec_glob_u*

ss687 .. ss741
}ask56

i5.80-20-1..10
kernell6.goto
neural

$s27 .. ss28
55267 .. 55268
55294 .. ss299
ss413 .. ss414
5s590 .. ss596
sim_bmbat*
sim_kmdump*
sim rmkeying*

sim_umnav* target whet1
whet2 whet4
Optimize = space dhrys3 whet4
Packing bit arrays de-7 _ desTa ‘]
Unchecked _Conversion des7 des7a kernel13
kernell4 $5259 ss500
ss506
Unchecked _Deallocation | rec_coli_c* rec_coll.u* rec_globc* 1
rec glob u* ss162 .. ss165 ss648
ss741
Preemptive Scheduling delayl .. delayl4 task44a taskd44b
task45a task45b

* — Names have been abbreviated in order to get them to fit in the table.

271

The folle ving test programs WITH package MATH:

CFA
I0_80A
I0_80B
KALMAN
KERNEL1 .. KERNEL24
LOOP7
LoOP8
NEURAL
S50000T14
S0015T29
S0030T44
S0045T59
S0258T72
$0273T85
S0286T00
S0301T15
S0394T08
50409725
*50424T33
*50439T43
S0558T74
S0575T89
S0590T97
*50616T30
50631T44
S0645T51
SA8TEST
SIMULATE
WHET1
WHET?2
WHET4

*These files do not contain test problems requiring a MATH package.

272

5.8 Appendix VIII, OPTIMIZATION TECHNIQUES

Tests for Optimizations

Algebraic simplification : 29 test probiems’

ssd4
ss48
ss50
ss61
ss63
ss65
ss67
ss74
ss220
ss319
55321
ss432
ss434
ss436
55560

ss47
ss49
ss51
5562
ss64
ss66
ss73
ss218
55221
ss320
55322
ss433
ss435
ss437

Boolean variable elimination : 1 test problem

ss176

Bounds check : 6 test problems

ssl74
ss193
$s255

ss192
ss194
$s368

273

Tests for Optimizations

Common subexpression elimination : 15 test problems

common ss75
ss76 ss170
ss172 ss210
ss406 ss428
ss508 ss509
$s530 ssb33
ss554 ss643
ss644

Short delays : 8 test problems

delayl delay?
delay3 delay4
delay8 delay9
delayl0 delayll

Data flow : 7 test problems

ss427 ss504
ss505 $s753
ss754 ss755
ss756

274

Tests for Optimizations

Dead code elimination : 9 test problems

dead ssb6
ss68 ss71
55225 55226
ss649 $s650
ss651

Fold 5 e bl

fold ss2
ss2_mod1l ss2_mod2
ss8 ss8 mod
ss4l ss41_mod
ssd42 ss42_mod
ssbH4

ssbb ss60

$s83 ss169
ss173 ss185
ss189 ss190
ss216 ss216_mod
ss217 ss219
ss219_mod 55227
ss219 $s227
ss230 ss231
$s232 ss239
55285 ss291
ss303 ss304
ss305 $s306
ss314 ss318
$s325 ss362
$s366 ss421
ss532 ss537
ss538 ss539
ss540 55556
55558 $s559

275

Tests for Optimizations

$s561x
ssh64
ss587
ssb89
ssH91
ss806
ss808
Task29

Task11
Task13
Task20

Inline : 12 test problems

loop4b
ss124
ss142
ss410
whetl
Whet3

$s563
55565
ss588
$s590
55595
ss807
Task28

Task12
Taskl4

loop6
ss141
55260
ss487
whet2
Whet4

276

Tests for Optimizations

Jump table : 1 test problem

ss133

Jump tracing : 6 test problems

ss182 ss183
ss184 $s250
ss619 5620

Loop flattening : 1 test problem

ss405

Loop 7fus'iion : 1 test p}rotb!emr_

ss180

277

Tests for Optimizations

Loop induction : 3 test problems

55236
55409

Loop invariant motion : 7 test problems

invar

$5222
ss430
$s752

Loop rotation : 3 test problems

ss385
$s387

Loop unrolling : 5 test problems

ss105
$s240
ss542

ss237

5212
ss429
ss536

$s386

55238
ssH41

278

Tests for Optimizations

Machine idiom : 33 test problems

idioms ss7
ss29 ss30
ss40 ss43
ss45 ss52
ss59 ss115
ss129 ss173
ss196 ss197
ss198 ss199
55200 ss204
55205 55206
ss207 $s208
ss214 ss215
$s323 ss466
ss503 ss507
ss553 ss555
ss608 ssearch
ssearch2

Mergé tests : 4 test pvroBierhs '

ss175 ss178
ss179 ss440

279

Tests for Optimizations

Nonpositive delay : 2 test problems

Task35

9_593'_'_ gf evaluation : 13 test problems

ss413
ss415
ss417
ss545
ss547
ss549
ss551

Task35_delta

ss414
ss416
ss418
55546
ss548
$s550

Redundant code elimination : 7 test problems

$s93
$s261
ss377
unreach

ss195
ss376
Task27

280

Tests for Optimizations

Register : 34 test problems

bsortl bsort2
cigsort dhrysl
dhrys2 dhrys3
gsortl gsort2
runge ss235
55262 56263
ss264 ss265
ss307 $s385x
ss388 ss407
ss408 ss412
ss442 ss443
ss510 ssH11
ss512 ss531
ss534 ss557
ss606 ss607
ss609 ss610
ss611 ss612

Strength : 20 test f problems

auto bmt
gamm gamm?2
loop0 loopl
foop3 loop5

lu puzzle
ss15 ss16
ss188 s5213
$s279 ss423
ss424 55425
ss426 strength

281

Tests for Optimizations

Test swapping : 2 test problems

ss438 ss439

Unreachable code elimination : 2 test problems

ss543 ss751

5.9 Appendix IX, WITHDRAWN TEST PROBLEMS

This appendix contains a list of test problems which have been withdrawn because of problem reports.
Modified versions of these tests are in the current release, with the exception of S5686. The new names
have an "_mod” appended to the old name. In addition, a list of test problems which have modified
versions added to the second release is provided. These problems have not been withdrawn, but there
are now two (or more) versions of each.

Withdrawn Tests

DHRYS1 DHRYS2 DHRYS3

FOLD QUEENS

5595 $596 $597 5598
| 55686

SS724 55725 S5726 SS727
§S728 SS729 SS730 SS731
SS732 S5724 SS735 SS736.
SS737 SS738 SS739 §5740
TASK54 TASK55

Tests with New Versions

| 552 552 modl SS2 mod2
SS8 558 mod
S$S41 | 5541 mod
5542 | 5542.mod
55216 | $5216.mod ”
5219 SS219med

283

